Luca CATARINUCCI

Luca CATARINUCCI

Professore II Fascia (Associato)

Settore Scientifico Disciplinare ING-INF/02: CAMPI ELETTROMAGNETICI.

Dipartimento di Ingegneria dell'Innovazione

Centro Ecotekne Pal. O - S.P. 6, Lecce - Monteroni - LECCE (LE)

Ufficio, Piano terra

Telefono +39 0832 29 7278

Orario di ricevimento

Martedì 11:30 - 13:30
Venerdì 10:30 - 11:30

Ogni giorno, previo appuntamento via email

 

Recapiti aggiuntivi

Tel. 0832 297278

Visualizza QR Code Scarica la Visit Card

Curriculum Vitae

Luca Catarinucci was born in Todi, Italy on November 28, 1972. He received his Bachelor's degree in Electrical Engineering from the University of Perugia in 1998, with a thesis focused on optimal frequency assignment for the GSM cellular network. He was a Research Associate at the ICEMB (interuniversity center for the interaction between electromagnetic fields and the environment), and collaborated with various departments at the University of Perugia and the University of Lecce. From 2004 to 2015, he was a Researcher at the University of Salento's Department of Engineering of Innovation. Currently, he is an Associate Professor in the scientific sector Ing-Inf/02 (Electromagnetic Fields) and holds the chairs of "Microwaves" and "Electromagnetic Solutions for Hi-Tech".

His early research focused on numerical analysis of the interaction between biological systems and electromagnetic fields, the development of high-performance electromagnetic simulation codes on parallel computing architectures, and the development of codes and solutions for the analysis of electromagnetic properties of fluids based on time-domain reflectometry.

Since 2006, he has added a research strand on emerging electromagnetic technologies enabling the "Internet of Things" (IoT), contributing to the evolution of RFID technology, its integration with sensors, and the development of rapid prototyping and electromagnetic characterization techniques for RFID tags.

The use of 3D-printing technology for high-frequency electronics is an additional research strand activated in 2016.

Catarinucci is the co-author of over 200 scientific works, including over 80 articles published in international journals, 4 book chapters, and numerous primarily international conferences. He is also a co-inventor of 2 patents in the RFID field.

 

(Italian version)

Luca Catarinucci è nato a Todi (Perugia), il 28 Novembre 1972. Ha ricevuto la laurea (con lode) in Ingegneria Elettronica presso l'Università degli Studi di Perugia nel 1998, con una tesi di laurea focalizzata sull'assegnamento ottimo di frequenze per la rete cellulare GSM. E' stato Assegnista di ricerca dell'ICEMB (centro interuniversitario sull'interazione tra campi elettromagnetici ed ambiente), ed ha collaborato a vario titolo con il Dipartimento di Ingegneria Elettronica e dell'Informazione (DIEI) dell'Università degli Studi di Perugia e con il Dipartimento di Ingegneria dell'Innovazione (DII) dell'Università degli Studi di Lecce. Dal 2004 al 2015 è stato Ricercatore presso il DII dell'Università del Salento. Attualmente è Professore Associato nel settore scientifico disciplinare Ing-Inf/02 (Campi Elettromagnetici) ed è titolare delle cattedre di "Microwaves" e di ""Electromagnetic Solutions for Hi-Tech".

Le sue prime tematiche di ricerca hanno riguardato principalmente l'analisi numerica dell'interazione tra sistemi biologici e campi elettromagnetici, lo sviluppo di codici di simulazione elettromagnetica ad alte prestazioni su architetture di calcolo parallelo e lo sviluppo di codici e soluzioni per l'analisi delle proprietà elettromagnetiche dei fluidi basati sulla riflettometria nel dominio del tempo.

A partire dal 2006, ha aggiunto ai precedenti un filone di ricerca relativo alle tecnologie elettromagnetiche emergenti abilitanti l'"Internet of Things" (IoT) contribuendo all'evoluzione della tecnologia RFID, alla sua integrazione con sensori, e allo sviluppo di tecniche di prototipazione rapida e caratterizzazione elettromagnetica di tag RFID.

L'uso della 3D-printing technology per l'elettronica ad alte frequenze è un ulteriore filone di ricerca attivato nel 2016.

Catarinucci è coautore di oltre 200 lavori scientifici tra i quali oltre 80 articoli pubblicati in riviste internazionali, 4 capitoli di libri e svariate conferenze prevalentemente internazionali. E' inoltre co-inventore di 2 brevetti in ambito RFID.

 

-----------------------------------------------------------------

CdLM Communication Engineering and Electronic Technologies

MICROWAVES

SSD: ING-INF/02
Course year: I
Lessons period: II semester
CFU: 9

Overview
Microwave course is aimed at providing both theoretical and practical knowledge on the main aspects of microwave engineering. It also serves as the necessary prerequisite for more advanced courses in communication engineering.

 

Prerequisite.
Electromagnetic Fields.

 

Course Program
(81 hours, of which 61 as frontal lessons, 12 as practical exercitations, and 8 as laboratory activities)

Introduction: the main differences between low-frequency and hi-frequency circuits (2 hours frontal lesson).

Transmission lines and waveguides: transmission lines theory. Smith chart. Line-Load matching through single and double stub techniques using the Smith chart. Quarter-wave matching. Properties of the most common transmission lines: coaxial cable, microstrip line, coplanar stripline. Properties of the most common waveguides: rectangular, circular, and "ridge" (24 hours frontal lesson).

Solutions of assigned exercises and practical examples of use of the Smith Chart. (12 hours practical exercitations).

Microwave junctions. N-port junctions. Scattering matrix. 2-port, 3-port and 4-port cases. (8 hours frontal lesson)

Microwave devices: functional description of the main passive components used in microwave circuits. Attenuators. Circulators. Dividers and combiners (Resistive, T-junction, Wilkinson). Directional couplers theory. Two-hole couplers. Branch-Line. Rat-Race. Magic-T. (12 hours frontal lesson)

Resonant cavities: brief overview on resonant cavities. Rectangular and circular resonant cavities. Application as filters and frequency meters. (4 hours frontal lesson)

Microwave filters: general information on Microwave filters. Main design techniques for a microwave filter. (6 hours frontal lesson)

Passive RFID technology : overview on passive RFID technology. The conjugate matching techniques in the design of RFID tags. (5 hours frontal lesson)

Microwave circuits analysis (Laboratory Activity): Introduction to microwave CAD programs; analysis of microwave circuits. Examples of design of simple microwave circuits. (5 hours laboratory activity)

S-Parameter evaluation (Laboratory Activity): Vector Network Analyzer description. Laboratory measurement of the scattering parameters of various microwave devices (rat race, Wilkinson divider, etc.). (3 laboratory activity)

Learning Outcomes
after the course, the student should be able to
- Apply microwave analysis methods to determine the main properties of high-frequency circuits.
- Apply knowledge on transmission lines and waveguides particularly for their use as elements in impedance matching and filter circuits.
- Design an impedance matching network with either distributed or lumped elements through the Smith Chart.
- Evaluate both analytically and experimentally the scattering parameters of N-Port microwave devices
- Illustrate the main aspects of N-Port networks, microwave filters, and resonant cavities.

Suggested Bibliography

[1] David M. Pozar, Microwave Engineering, John Wiley & Sons Inc
[2] Sorrentino Roberto, Bianchi Giovanni, Microwave and RF Engineering, Wiley
[3] E. Collin, Foundation of microwave engineering, McGraw Hill, New York

Teaching modalities:
Frontal lessons, practical exercises, laboratory activities.

Examination
Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

Office Hours:
Tuesday h. 11:30 - 13:30
Friday h. 10:30 - 11:30

_______________________________________________________________________________________
_______________________________________________________________________________________ 

CdLM Communication Engineering and Electronic Technologies
(and CdL Ingegneria dell'Informazione - insegnamento a scelta)

Electromagnetic Solutions for Hi-Tech

SSD: ING-INF/02
Course year for CdLM students : II
Course year for “CdL Ingegneria dell'Informazione” students: III
Lessons period: II semester
CFU: 6

Overview
The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market.

Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed.

"Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative aspects are highlighted and stressed, even though the approach keeps on being extremely rigorous.

Preliminary Knowledge
Contents of “Fisica II” related to Maxwell's equations are needed.

Course Program
PART 1
(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity)
.
Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

PART 2
(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

PART 3
(8 hours, of which 6 hours of frontal lesson and 2 hours of laboratory activity)

Design, implementation and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Preliminary design of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including: antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields. Final design, realization in laboratory, calibration. Testing the meter in a practical case: checking RFID coverage in a real environment.

PART 4
(9 hours, of which 6 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of UHF RFID tags. RFID technology: the design of RFID tags, backscattering modulation, chip sensitivity, tag sensitivity, band. Preliminary design of an RFID tag. Depth study of the basic concepts of electromagnetics useful for the project, including: conjugate matching, and measurement of the radiation pattern. Final design, laboratory realization, electromagnetic characterization in terms of radiation pattern and tag sensitivity.

PART 5
(6 hours of scientific seminars)
Seminars from the business and researh world. One to three seminars dealing with the design and use of emerging technologies are planned.

Learning Outcomes;
At the end of the course the student should be able to:
- Apply the basic concepts of electromagnetism.
- Set up high frequency device designs based on requirements.
- Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas.
- Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies (mm-Wave Wi-Fi , 5G).

Suggested Bibliography
Main course book:
[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:
[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000
[3] A. Paraboni, Antenne, Mc Graw-Hill
[4] J. D. Kraus, Antennas, Mc Graw-Hill

Teaching modalities:
Frontal lessons, practical exercitations, laboratory activities.

Examination
Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

Office Hours:
Tuesday h. 11:30 - 13:30
Friday h. 10:30 - 11:30

 

Didattica

A.A. 2023/2024

MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2023/2024

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

SOLUZIONI ELETTROMAGNETICHE PER L'HI-TECH

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Tipo corso di studio Laurea

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2023/2024

Per immatricolati nel 2021/2022

Anno di corso 3

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso CURRICULUM B

Sede Lecce

A.A. 2022/2023

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2021/2022

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso Telecom Applications

Sede Lecce

MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2022/2023

Per immatricolati nel 2022/2023

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2021/2022

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente Luca CATARINUCCI: 45.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2020/2021

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2021/2022

Per immatricolati nel 2021/2022

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2020/2021

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente Luca CATARINUCCI: 45.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2019/2020

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2020/2021

Per immatricolati nel 2020/2021

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2019/2020

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente Luca CATARINUCCI: 45.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2018/2019

Anno di corso 2

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2019/2020

Per immatricolati nel 2019/2020

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

A.A. 2018/2019

MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Tipo corso di studio Laurea Magistrale

Lingua ITALIANO

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Anno accademico di erogazione 2018/2019

Per immatricolati nel 2018/2019

Anno di corso 1

Struttura DIPARTIMENTO DI INGEGNERIA DELL'INNOVAZIONE

Percorso PERCORSO COMUNE

Sede Lecce

Torna all'elenco
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2023/2024

Anno accademico di erogazione 2023/2024

Anno di corso 1

Semestre Secondo Semestre (dal 04/03/2024 al 14/06/2024)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Electromagnetic Fields

Microwave course is aimed at providing both theoretical and practical knowledge on the main aspects of microwave engineering. It also serves as the necessary prerequisite for more advanced courses in communication engineering.

After the course the student should be able to

* Apply microwave analysis methods to determine the main properties of high-frequency circuits.

* Apply knowledge on transmission lines and waveguides particularly for their use as elements in impedance matching and filter circuits.

* Design an impedance matching network with either distributed or lumped elements through the Smith Chart.

* Evaluate both analytically and experimentally the scattering parameters of N-Port microwave devices

* Illustrate the main aspects of N-Port networks, microwave filters and resonant cavities

The primary mode of instruction involves traditional 'chalk and blackboard' lectures to ensure students can closely follow each mathematical concept. Additionally, PowerPoint presentations are utilized for certain lessons where graphical support aids comprehension. Furthermore, the curriculum includes at least three hands-on experiences to familiarize students with simulating radiofrequency circuits and understanding their electromagnetic characteristics.

An oral exame is foreseen. It is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

Office Hours: By appointment; contact the professor by email or at the end of class meetings. Official office hours will be defined once the course agenda will be definited.

activities)

Introduction: the main differences between low-frequency and hi-frequency circuits (2 hours frontal lesson).

Transmission lines and waveguides: transmission lines theory. Smith chart. Line-Load matching through single and double stub techniques using the Smith chart. Quarter-wave matching. Properties of the most common transmission lines: coaxial cable, microstrip line, coplanar stripline. Properties of the most common waveguides: rectangular, circular, and "ridge" (24 hours frontal lesson).

Solutions of assigned exercises and practical examples of use of the Smith Chart. (12 hours practical exercitations).

Microwave junctions. N-port junctions. Scattering matrix. 2-port, 3-port and 4-port cases. (8 hours frontal lesson)

Microwave devices: functional description of the main passive components used in microwave circuits. Attenuators. Circulators. Dividers and combiners (Resistive, T-junction, Wilkinson). Directional couplers theory. Two-hole couplers. Branch-Line. Rat-Race. Magic-T. (12 hours frontal lesson)

Resonant cavities: brief overview on resonant cavities. Rectangular and circular resonant cavities. Application as filters and frequency meters. (4 hours frontal lesson)

Microwave filters: general information on Microwave filters. Main design techniques for a microwave filter. (6 hours frontal lesson)

Passive RFID technology : overview on passive RFID technology. The conjugate matching techniques in the design of RFID tags. (5 hours frontal lesson)

Microwave circuits analysis (Laboratory Activity): Introduction to microwave CAD programs; analysis of microwave circuits. Examples of design of simple microwave circuits. (5 hours laboratory activity)

S-Parameter evaluation (Laboratory Activity): Vector Network Analyzer description. Laboratory measurement of the scattering parameters of various microwave devices (rat race, Wilkinson divider, etc.). (3 laboratory activity)

[1] David M. Pozar, Microwave Engineering, John Wiley & Sons Inc

[2] Sorrentino Roberto, Bianchi Giovanni, Microwave and RF Engineering, John Wiley & Sons Inc

MICROWAVES (ING-INF/02)
SOLUZIONI ELETTROMAGNETICHE PER L'HI-TECH

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2023/2024

Anno di corso 3

Semestre Secondo Semestre (dal 04/03/2024 al 14/06/2024)

Lingua ITALIANO

Percorso CURRICULUM B (A187)

Sede Lecce

Contenuti di Fisica II relativi alle equazioni di Maxwell sono necessari.
Contents of “Fisica II” related to Maxwell's equations are needed.

Il corso ha l'obiettivo di introdurre ed esplorare approfonditamente alcuni degli aspetti applicativi dell'elettromagnetismo che risultano più interessanti per gli studenti e più rilevanti dal punto di vista del loro impiego nel mercato del lavoro.

Partendo da progetti generali focalizzati sugli aspetti delle radiofrequenze delle nuove tecnologie wireless, verranno approfonditi i concetti di base funzionali al loro sviluppo, saranno realizzati, da parte degli studenti, i dispositivi progettati e saranno sviluppate competenze utili per la realizzazione pratica e i test dei dispositivi progettati.

Il corso "Soluzioni Elettromagnetiche per l'Hi-Tech" si concentra su vari argomenti comuni ad altri corsi appartenenti allo stesso settore scientifico, ma rimane autoconsistente non vincolato da prerequisiti. Strategicamente, vengono evidenziati e sottolineati gli aspetti qualitativi e applicativi, pur mantenendo un approccio estremamente rigoroso.



The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market.

Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed by the students themselves, and skills useful for the practical realization and tests of the designed devices will be developed.

"Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative aspects are highlighted and stressed, even though the approach keeps on being extremely rigorous.

Al termine del corso, lo studente sarà in grado di:
- Applicare i concetti di base dell'elettromagnetismo.
- Progettare dispositivi ad alta frequenza in base ai requisiti.
- Padroneggiare (tra gli altri) i concetti di adattamento di impedenza, diagramma di radiazione, guadagno, polarizzazione, teoria delle immagini, antenne filiformi.
- Arricchire la conoscenza (dal punto di vista dell'elettromagnetismo) delle tecnologie consolidate (ad esempio Wi-Fi e GSM), emergenti (RFID UHF e HF, NFC, Bluetooth Low Energy) e in via di sviluppo (5G, 6G, antenne stampate in 3D, ecc.).

 

At the end of the course the student should be able to:
- Apply the basic concepts of electromagnetics.
- Set up high frequency device designs based on requirements.
- Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theory, filiform antennas.
- Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies (5G, 6G, 3D-Printed antennas, etc).

Lezioni frintali, esercitazioni pratiche, attività di laboratorio.

Frontal lessons, practical exercitations, laboratory activities.

Esame orale: L'esame orale mira a verificare la conoscenza degli argomenti del corso acquisita dallo studente (Massima durata dell'esame: 45 minuti)


Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PARTE 1 (25 ore, di cui 16 ore di lezioni frontali e 9 ore di attività in laboratorio).

Progettazione, costruzione e test di antenne a guida d'onda per comunicazioni Wi-Fi (ogni studente progetterà e realizzerà la propria antenna): Note sulla tecnologia Wi-Fi. Progettazione preliminare di un'antenna a guida d'onda per collegamenti Wi-Fi. Introduzione qualitativa ai concetti di base dell'elettromagnetismo utili per il progetto: circuiti a costanti distribuite, linee di trasmissione; adattamento dell'impedenza; antenne filiformi (dipolo in l/2 e in l/4); metodo delle immagini; diagrammi di radiazione; direttività e guadagno; guide d'onda circolari; modi TE e TM nelle guide d'onda. Analizzatore di rete vettoriale. Utilizzo dell'Analizzatore di Rete Vettoriale per la misura di alcune proprietà dell'antenna. Progettazione finale, simulazione, realizzazione in laboratorio, misurazioni con l'Analizzatore di Rete Vettoriale e possibile ottimizzazione. Progettazione del sistema di test. Verifica delle prestazioni.

 

PARTE 2 (6 ore, di cui 4 ore di lezioni frontali e 2 ore di attività in laboratorio).

Analisi delle antenne a pannello per stazioni radio base GSM: caratteristiche del GSM dal punto di vista del progettista di antenne. Linee guida per la progettazione generale di un'antenna a pannello per stazioni radio base GSM. Approfondimento dei concetti di base dell'elettromagnetismo utili per il progetto, inclusi: array lineari e array planari. FDTD 2D per antenne GSM.

 

PARTE 3 (6 ore, di cui 4 ore di lezioni frontali e 2 ore di attività in laboratorio).

Progettazione, realizzazione e test di un misuratore di campo elettrico per segnali RFID UHF. Tecnologia RFID: principali aspetti della tecnologia. Esempi di applicazione della tecnologia RFID. Progettazione preliminare di un misuratore di campo elettrico per la banda UHF. Approfondimento dei concetti di base dell'elettromagnetismo utili per il progetto, inclusi: teorema di reciprocità delle antenne, polarizzazione lineare, circolare ed ellittica, misurazione di campi elettromagnetici a bassa e alta frequenza. Progettazione finale, realizzazione in laboratorio, calibrazione. Test del misuratore in un caso pratico: verifica della copertura RFID in un ambiente reale.

 

PARTE 4 (7 ore, di cui 4 ore di lezioni frontali e 3 ore di attività in laboratorio).

Progettazione, realizzazione e test di tag RFID UHF. Tecnologia RFID: progettazione dei tag RFID, modulazione a retrodiffusione, sensibilità del chip, sensibilità del tag, banda. Progettazione preliminare di un tag RFID. Approfondimento dei concetti di base dell'elettromagnetismo utili per il progetto, inclusi: adattamento conjugato e misurazione del diagramma di radiazione. Progettazione finale, realizzazione in laboratorio, caratterizzazione elettromagnetica in termini di diagramma di radiazione e sensibilità del tag.

 

PARTE 5 (6 ore, di cui 3 ore di lezioni frontali e 3 ore di attività in laboratorio).

rogettazione, realizzazione e test di dispositivi elettromagnetici stampati in 3D. Tecniche di manifattura additiva e il loro utilizzo nell'elettromagnetismo. Filamenti stampabili in 3D ad alta permittività e alta conducibilità e loro caratterizzazione.

 

PARTE 6 (4 ore di seminari scientifici)

Seminari provenienti dal mondo aziendale e della ricerca. È previsto uno a tre seminari che trattano la progettazione e l'uso delle tecnologie emergenti.

 

 

 

 

PART 1
(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity)
.
Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

PART 2
(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

PART 3
(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Design, implementation and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Preliminary design of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including: antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields. Final design, realization in laboratory, calibration. Testing the meter in a practical case: checking RFID coverage in a real environment.

PART 4
(7 hours, of which 4 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of UHF RFID tags. RFID technology: the design of RFID tags, backscattering modulation, chip sensitivity, tag sensitivity, band. Preliminary design of an RFID tag. Depth study of the basic concepts of electromagnetics useful for the project, including: conjugate matching, and measurement of the radiation pattern. Final design, laboratory realization, electromagnetic characterization in terms of radiation pattern and tag sensitivity.

PART 5
(6 hours, of which 3 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of 3D-Printed electromagnetic devices. Additive Manufacturing techniques and their use in Electromagnetics. Hi-permittivity and hi-conductivity 3D-Printable filaments and their characterization. 

PART 6
(4 hours of scientific seminars)
Seminars from the business and research world. One to three seminars dealing with the design and use of emerging technologies are planned.

Main course book:
[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:
[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000
[3] A. Paraboni, Antenne, Mc Graw-Hill
[4] J. D. Kraus, Antennas, Mc Graw-Hill

SOLUZIONI ELETTROMAGNETICHE PER L'HI-TECH (ING-INF/02)
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2022/2023

Anno di corso 2

Semestre Secondo Semestre (dal 01/03/2023 al 09/06/2023)

Lingua ITALIANO

Percorso Telecom Applications (A181)

Sede Lecce

For “CdL Ingegneria dell'Informazione” students: Contents of “Fisica II” related to Maxwell's equations are needed.

The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market.

Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed.

"Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative aspects are highlighted and stressed, even though the approach keeps on being extremely rigorous.

At the end of the course the student should be able to:
- Apply the basic concepts of electromagnetism.
- Set up high frequency device designs based on requirements.
- Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas.
- Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies (mm-Wave Wi-Fi , 5G).

Frontal lessons, practical exercitations, laboratory activities.

Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PART 1
(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity)
.
Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

PART 2
(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

PART 3
(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Design, implementation and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Preliminary design of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including: antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields. Final design, realization in laboratory, calibration. Testing the meter in a practical case: checking RFID coverage in a real environment.

PART 4
(7 hours, of which 4 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of UHF RFID tags. RFID technology: the design of RFID tags, backscattering modulation, chip sensitivity, tag sensitivity, band. Preliminary design of an RFID tag. Depth study of the basic concepts of electromagnetics useful for the project, including: conjugate matching, and measurement of the radiation pattern. Final design, laboratory realization, electromagnetic characterization in terms of radiation pattern and tag sensitivity.

PART 5
(6 hours, of which 3 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of 3D-Printed electromagnetic devices. Additive Manufacturing techniques and their use in Electromagnetics. Hi-permittivity and hi-conductivity 3D-Printable filaments and their characterization. 

PART 6
(4 hours of scientific seminars)
Seminars from the business and research world. One to three seminars dealing with the design and use of emerging technologies are planned.

Main course book:
[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:
[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000
[3] A. Paraboni, Antenne, Mc Graw-Hill
[4] J. D. Kraus, Antennas, Mc Graw-Hill

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2022/2023

Anno accademico di erogazione 2022/2023

Anno di corso 1

Semestre Secondo Semestre (dal 01/03/2023 al 09/06/2023)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Electromagnetic Fields

Microwave course is aimed at providing both theoretical and practical knowledge on the main aspects of microwave engineering. It also serves as the necessary prerequisite for more advanced courses in communication engineering.

After the course the student should be able to

* Apply microwave analysis methods to determine the main properties of high-frequency circuits.

* Apply knowledge on transmission lines and waveguides particularly for their use as elements in impedance matching and filter circuits.

* Design an impedance matching network with either distributed or lumped elements through the Smith Chart.

* Evaluate both analytically and experimentally the scattering parameters of N-Port microwave devices

* Illustrate the main aspects of N-Port networks, microwave filters and resonant cavities

Frontal lessons mainly in "chalk and blackboard" to allow students to follow each mathematical passage slavishly.
Use of power point presentations for some specific lessons where graphical support is useful for understanding.
At least three practical experiences are also foreseen to introduce students to the simulation of radiofrequency circuits and their electromagnetic characterization.

An oral exame is foreseen. It is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

Office Hours: By appointment; contact the professor by email or at the end of class meetings. Official office hours will be defined once the course agenda will be definited.

activities)

Introduction: the main differences between low-frequency and hi-frequency circuits (2 hours frontal lesson).

Transmission lines and waveguides: transmission lines theory. Smith chart. Line-Load matching through single and double stub techniques using the Smith chart. Quarter-wave matching. Properties of the most common transmission lines: coaxial cable, microstrip line, coplanar stripline. Properties of the most common waveguides: rectangular, circular, and "ridge" (24 hours frontal lesson).

Solutions of assigned exercises and practical examples of use of the Smith Chart. (12 hours practical exercitations).

Microwave junctions. N-port junctions. Scattering matrix. 2-port, 3-port and 4-port cases. (8 hours frontal lesson)

Microwave devices: functional description of the main passive components used in microwave circuits. Attenuators. Circulators. Dividers and combiners (Resistive, T-junction, Wilkinson). Directional couplers theory. Two-hole couplers. Branch-Line. Rat-Race. Magic-T. (12 hours frontal lesson)

Resonant cavities: brief overview on resonant cavities. Rectangular and circular resonant cavities. Application as filters and frequency meters. (4 hours frontal lesson)

Microwave filters: general information on Microwave filters. Main design techniques for a microwave filter. (6 hours frontal lesson)

Passive RFID technology : overview on passive RFID technology. The conjugate matching techniques in the design of RFID tags. (5 hours frontal lesson)

Microwave circuits analysis (Laboratory Activity): Introduction to microwave CAD programs; analysis of microwave circuits. Examples of design of simple microwave circuits. (5 hours laboratory activity)

S-Parameter evaluation (Laboratory Activity): Vector Network Analyzer description. Laboratory measurement of the scattering parameters of various microwave devices (rat race, Wilkinson divider, etc.). (3 laboratory activity)

[1] David M. Pozar, Microwave Engineering, John Wiley & Sons Inc

[2] Sorrentino Roberto, Bianchi Giovanni, Microwave and RF Engineering, John Wiley & Sons Inc

MICROWAVES (ING-INF/02)
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente Luca CATARINUCCI: 45.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2021/2022

Anno di corso 2

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

For “CdL Ingegneria dell'Informazione” students: Contents of “Fisica II” related to Maxwell's equations are needed.

The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market.

Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed.

"Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative aspects are highlighted and stressed, even though the approach keeps on being extremely rigorous.

At the end of the course the student should be able to:
- Apply the basic concepts of electromagnetism.
- Set up high frequency device designs based on requirements.
- Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas.
- Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies (mm-Wave Wi-Fi , 5G).

Frontal lessons, practical exercitations, laboratory activities.

Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PART 1
(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity)
.

Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

 

PART 2
(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

 

PART 3
(9 hours, of which 5 hours of frontal lesson and 4 hours of laboratory activity)

Basic theory and examples about horn antennas, slotted waveguide antennas, and parabolic reflectors. The basic theory for analyzing aperture antennas will be presented, including Principle of Equivalence and radiated field derivation through 2D Fourier transform. Some examples of aperture antennas will also be analyzed by introducing the basic design equations.

A full-wave simulator commercial software will be used for analyzing some examples of aperture antennas. An experiment will be also developed.

 

PART 4
(8 hours, of which 6 hours of frontal lesson and 2 hours of laboratory activity)

Analysis and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Analysis of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields, conjugate matching, link budget, and measurement of the radiation pattern. Test of the meter in a practical case: checking RFID coverage in a real environment.

 

PART 5
(6 hours of scientific seminars)

Seminars from the business and research world. One to three seminars dealing with the design and use of emerging technologies are planned.

Main course book:
[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:
[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000
[3] A. Paraboni, Antenne, Mc Graw-Hill
[4] J. D. Kraus, Antennas, Mc Graw-Hill

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2021/2022

Anno accademico di erogazione 2021/2022

Anno di corso 1

Semestre Secondo Semestre (dal 01/03/2022 al 10/06/2022)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Electromagnetic Fields

Microwave course is aimed at providing both theoretical and practical knowledge on the main aspects of microwave engineering. It also serves as the necessary prerequisite for more advanced courses in communication engineering.

After the course the student should be able to

* Apply microwave analysis methods to determine the main properties of high-frequency circuits.

* Apply knowledge on transmission lines and waveguides particularly for their use as elements in impedance matching and filter circuits.

* Design an impedance matching network with either distributed or lumped elements through the Smith Chart.

* Evaluate both analytically and experimentally the scattering parameters of N-Port microwave devices

* Illustrate the main aspects of N-Port networks, microwave filters and resonant cavities

Frontal lessons mainly in "chalk and blackboard" to allow students to follow each mathematical passage slavishly.
Use of power point presentations for some specific lessons where graphical support is useful for understanding.
At least three practical experiences are also foreseen to introduce students to the simulation of radiofrequency circuits and their electromagnetic characterization.

An oral exame is foreseen. It is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

Office Hours: By appointment; contact the professor by email or at the end of class meetings. Official office hours will be defined once the course agenda will be definited.

activities)

Introduction: the main differences between low-frequency and hi-frequency circuits (2 hours frontal lesson).

Transmission lines and waveguides: transmission lines theory. Smith chart. Line-Load matching through single and double stub techniques using the Smith chart. Quarter-wave matching. Properties of the most common transmission lines: coaxial cable, microstrip line, coplanar stripline. Properties of the most common waveguides: rectangular, circular, and "ridge" (24 hours frontal lesson).

Solutions of assigned exercises and practical examples of use of the Smith Chart. (12 hours practical exercitations).

Microwave junctions. N-port junctions. Scattering matrix. 2-port, 3-port and 4-port cases. (8 hours frontal lesson)

Microwave devices: functional description of the main passive components used in microwave circuits. Attenuators. Circulators. Dividers and combiners (Resistive, T-junction, Wilkinson). Directional couplers theory. Two-hole couplers. Branch-Line. Rat-Race. Magic-T. (12 hours frontal lesson)

Resonant cavities: brief overview on resonant cavities. Rectangular and circular resonant cavities. Application as filters and frequency meters. (4 hours frontal lesson)

Microwave filters: general information on Microwave filters. Main design techniques for a microwave filter. (6 hours frontal lesson)

Passive RFID technology : overview on passive RFID technology. The conjugate matching techniques in the design of RFID tags. (5 hours frontal lesson)

Microwave circuits analysis (Laboratory Activity): Introduction to microwave CAD programs; analysis of microwave circuits. Examples of design of simple microwave circuits. (5 hours laboratory activity)

S-Parameter evaluation (Laboratory Activity): Vector Network Analyzer description. Laboratory measurement of the scattering parameters of various microwave devices (rat race, Wilkinson divider, etc.). (3 laboratory activity)

[1] David M. Pozar, Microwave Engineering, John Wiley & Sons Inc

[2] Sorrentino Roberto, Bianchi Giovanni, Microwave and RF Engineering, John Wiley & Sons Inc

MICROWAVES (ING-INF/02)
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente Luca CATARINUCCI: 45.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2020/2021

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2021 al 05/06/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

For “CdL Ingegneria dell'Informazione” students: Contents of “Fisica II” related to Maxwell's equations are needed.

The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market.

Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed.

"Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative aspects are highlighted and stressed, even though the approach keeps on being extremely rigorous.

At the end of the course the student should be able to:
- Apply the basic concepts of electromagnetism.
- Set up high frequency device designs based on requirements.
- Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas.
- Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies (mm-Wave Wi-Fi , 5G).

Frontal lessons, practical exercitations, laboratory activities.

Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PART 1
(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity)
.

Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

 

PART 2
(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

 

PART 3
(9 hours, of which 5 hours of frontal lesson and 4 hours of laboratory activity)

Basic theory and examples about horn antennas, slotted waveguide antennas, and parabolic reflectors. The basic theory for analyzing aperture antennas will be presented, including Principle of Equivalence and radiated field derivation through 2D Fourier transform. Some examples of aperture antennas will also be analyzed by introducing the basic design equations.

A full-wave simulator commercial software will be used for analyzing some examples of aperture antennas. An experiment will be also developed.

 

PART 4
(8 hours, of which 6 hours of frontal lesson and 2 hours of laboratory activity)

Analysis and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Analysis of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields, conjugate matching, link budget, and measurement of the radiation pattern. Test of the meter in a practical case: checking RFID coverage in a real environment.

 

PART 5
(6 hours of scientific seminars)

Seminars from the business and research world. One to three seminars dealing with the design and use of emerging technologies are planned.

Main course book:
[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:
[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000
[3] A. Paraboni, Antenne, Mc Graw-Hill
[4] J. D. Kraus, Antennas, Mc Graw-Hill

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2020/2021

Anno accademico di erogazione 2020/2021

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2021 al 05/06/2021)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Electromagnetic Fields

Microwave course is aimed at providing both theoretical and practical knowledge on the main aspects of microwave engineering. It also serves as the necessary prerequisite for more advanced courses in communication engineering.

After the course the student should be able to

* Apply microwave analysis methods to determine the main properties of high-frequency circuits.

* Apply knowledge on transmission lines and waveguides particularly for their use as elements in impedance matching and filter circuits.

* Design an impedance matching network with either distributed or lumped elements through the Smith Chart.

* Evaluate both analytically and experimentally the scattering parameters of N-Port microwave devices

* Illustrate the main aspects of N-Port networks, microwave filters and resonant cavities

Frontal lessons mainly in "chalk and blackboard" to allow students to follow each mathematical passage slavishly.
Use of power point presentations for some specific lessons where graphical support is useful for understanding.
At least three practical experiences are also foreseen to introduce students to the simulation of radiofrequency circuits and their electromagnetic characterization.

An oral exame is foreseen. It is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

Office Hours: By appointment; contact the professor by email or at the end of class meetings. Official office hours will be defined once the course agenda will be definited.

activities)

Introduction: the main differences between low-frequency and hi-frequency circuits (2 hours frontal lesson).

Transmission lines and waveguides: transmission lines theory. Smith chart. Line-Load matching through single and double stub techniques using the Smith chart. Quarter-wave matching. Properties of the most common transmission lines: coaxial cable, microstrip line, coplanar stripline. Properties of the most common waveguides: rectangular, circular, and "ridge" (24 hours frontal lesson).

Solutions of assigned exercises and practical examples of use of the Smith Chart. (12 hours practical exercitations).

Microwave junctions. N-port junctions. Scattering matrix. 2-port, 3-port and 4-port cases. (8 hours frontal lesson)

Microwave devices: functional description of the main passive components used in microwave circuits. Attenuators. Circulators. Dividers and combiners (Resistive, T-junction, Wilkinson). Directional couplers theory. Two-hole couplers. Branch-Line. Rat-Race. Magic-T. (12 hours frontal lesson)

Resonant cavities: brief overview on resonant cavities. Rectangular and circular resonant cavities. Application as filters and frequency meters. (4 hours frontal lesson)

Microwave filters: general information on Microwave filters. Main design techniques for a microwave filter. (6 hours frontal lesson)

Passive RFID technology : overview on passive RFID technology. The conjugate matching techniques in the design of RFID tags. (5 hours frontal lesson)

Microwave circuits analysis (Laboratory Activity): Introduction to microwave CAD programs; analysis of microwave circuits. Examples of design of simple microwave circuits. (5 hours laboratory activity)

S-Parameter evaluation (Laboratory Activity): Vector Network Analyzer description. Laboratory measurement of the scattering parameters of various microwave devices (rat race, Wilkinson divider, etc.). (3 laboratory activity)

[1] David M. Pozar, Microwave Engineering, John Wiley & Sons Inc

[2] Sorrentino Roberto, Bianchi Giovanni, Microwave and RF Engineering, John Wiley & Sons Inc

MICROWAVES (ING-INF/02)
ELECTROMAGNETIC SOLUTIONS FOR HI-TECH

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 6.0

Docente titolare Luca CATARINUCCI

Ripartizione oraria Ore totali di attività frontale: 54.0

  Ore erogate dal docente Luca CATARINUCCI: 45.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2019/2020

Anno di corso 2

Semestre Secondo Semestre (dal 02/03/2020 al 05/06/2020)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

For “CdL Ingegneria dell'Informazione” students: Contents of “Fisica II” related to Maxwell's equations are needed.

The course aims at introducing and deeply investigating some of the applicative aspects of Electromagnetics which are more appealing to the student and more relevant from the point of view of their use in the labour market.

Starting from general projects focused on RF aspects of new wireless technologies, the basic concepts functional to their development will be deepened, the final projects will be executed and skills useful for the practical realization and tests of the designed devices will be developed.

"Electromagnetic Solutions for Hi-Tech" focuses on various topics in common with other courses belonging to the same scientific sector, but it remains a self-consistent course not bound by any prerequisites. Strategically, in "Electromagnetic Solutions for Hi Tech" qualitative and applicative aspects are highlighted and stressed, even though the approach keeps on being extremely rigorous.

At the end of the course the student should be able to:
- Apply the basic concepts of electromagnetism.
- Set up high frequency device designs based on requirements.
- Master (among others) the concepts of impedance matching, radiation diagram, gain, polarization, image theorem, filiform antennas.
- Enrich the knowledge (from the point of view of Electromagnetics) of consolidated (e.g. Wi-Fi and GSM), emerging (RFID UHF and HF, NFC, Bluetooth Low Energy), and approaching technologies (mm-Wave Wi-Fi , 5G).

Frontal lessons, practical exercitations, laboratory activities.

Oral exam. The oral exam is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

PART 1
(25 hours, of which 16 hours of frontal lesson and 9 hours of laboratory activity)
.
Design, construction and test of waveguide antennas for Wi-Fi communication (each student will design and realize his own antenna): Notes on Wi-Fi technology. Preliminary design of a waveguide antenna for Wi-Fi links. Qualitative introduction of the basic concepts of electromagnetics useful for the project: distributed constant circuits, transmission lines; line-load matching; filiform antennas (dipole in l/2 and in l/4); method of images; radiation diagrams; directivity and gain; circular waveguides; TE and TM modes in waveguides. Vector Network Analyzer. Use of the Vector Network Analyzer for the measurement of some antenna properties. Final design, simulation, laboratory realization, measurement with Vector Network Analyzer and possible optimization. Test system design. Performance verification.

PART 2
(6 hours, of which 4 hours of frontal lesson and 2 hours of laboratory activity)

Analysis of panel antennas for GSM base radio stations: characteristics of GSM from the point of view of the antenna designer. Guidelines for the general design of a panel antenna for GSM base radio stations. Depth study of the basic concepts of electromagnetics useful for the project, including: linear arrays and planar arrays. 2D FDTD for GSM antennas.

PART 3
(8 hours, of which 6 hours of frontal lesson and 2 hours of laboratory activity)

Design, implementation and test of an electric field meter for UHF RFID signals. RFID technology: main aspects of the technology. Examples of application of RFID technology. Preliminary design of an electric field meter for the UHF band. Depth study of the basic concepts of electromagnetics useful for the project, including: antenna reciprocity theorem, linear, circular and elliptical polarization, measurement of low and high frequency electromagnetic fields. Final design, realization in laboratory, calibration. Testing the meter in a practical case: checking RFID coverage in a real environment.

PART 4
(9 hours, of which 6 hours of frontal lesson and 3 hours of laboratory activity)

Design, implementation and test of UHF RFID tags. RFID technology: the design of RFID tags, backscattering modulation, chip sensitivity, tag sensitivity, band. Preliminary design of an RFID tag. Depth study of the basic concepts of electromagnetics useful for the project, including: conjugate matching, and measurement of the radiation pattern. Final design, laboratory realization, electromagnetic characterization in terms of radiation pattern and tag sensitivity.

PART 5
(6 hours of scientific seminars)
Seminars from the business and research world. One to three seminars dealing with the design and use of emerging technologies are planned.

Main course book:
[1] Huang, Kevin Boyle, Antennas: From Theory to Practice, Wiley

Other Suggested Bibliography:
[2] G. Gerosa, P. Lampariello, Lezioni di Campi Elettromagnetici, Edizioni Ingegneria 2000
[3] A. Paraboni, Antenne, Mc Graw-Hill
[4] J. D. Kraus, Antennas, Mc Graw-Hill

ELECTROMAGNETIC SOLUTIONS FOR HI-TECH (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2019/2020

Anno accademico di erogazione 2019/2020

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2020 al 05/06/2020)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Electromagnetic Fields

Microwave course is aimed at providing both theoretical and practical knowledge on the main aspects of microwave engineering. It also serves as the necessary prerequisite for more advanced courses in communication engineering.

After the course the student should be able to

* Apply microwave analysis methods to determine the main properties of high-frequency circuits.

* Apply knowledge on transmission lines and waveguides particularly for their use as elements in impedance matching and filter circuits.

* Design an impedance matching network with either distributed or lumped elements through the Smith Chart.

* Evaluate both analytically and experimentally the scattering parameters of N-Port microwave devices

* Illustrate the main aspects of N-Port networks, microwave filters and resonant cavities

Frontal lessons mainly in "chalk and blackboard" to allow students to follow each mathematical passage slavishly.
Use of power point presentations for some specific lessons where graphical support is useful for understanding.
At least three practical experiences are also foreseen to introduce students to the simulation of radiofrequency circuits and their electromagnetic characterization.

An oral exame is foreseen. It is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

Office Hours: By appointment; contact the professor by email or at the end of class meetings. Official office hours will be defined once the course agenda will be definited.

activities)

Introduction: the main differences between low-frequency and hi-frequency circuits (2 hours frontal lesson).

Transmission lines and waveguides: transmission lines theory. Smith chart. Line-Load matching through single and double stub techniques using the Smith chart. Quarter-wave matching. Properties of the most common transmission lines: coaxial cable, microstrip line, coplanar stripline. Properties of the most common waveguides: rectangular, circular, and "ridge" (24 hours frontal lesson).

Solutions of assigned exercises and practical examples of use of the Smith Chart. (12 hours practical exercitations).

Microwave junctions. N-port junctions. Scattering matrix. 2-port, 3-port and 4-port cases. (8 hours frontal lesson)

Microwave devices: functional description of the main passive components used in microwave circuits. Attenuators. Circulators. Dividers and combiners (Resistive, T-junction, Wilkinson). Directional couplers theory. Two-hole couplers. Branch-Line. Rat-Race. Magic-T. (12 hours frontal lesson)

Resonant cavities: brief overview on resonant cavities. Rectangular and circular resonant cavities. Application as filters and frequency meters. (4 hours frontal lesson)

Microwave filters: general information on Microwave filters. Main design techniques for a microwave filter. (6 hours frontal lesson)

Passive RFID technology : overview on passive RFID technology. The conjugate matching techniques in the design of RFID tags. (5 hours frontal lesson)

Microwave circuits analysis (Laboratory Activity): Introduction to microwave CAD programs; analysis of microwave circuits. Examples of design of simple microwave circuits. (5 hours laboratory activity)

S-Parameter evaluation (Laboratory Activity): Vector Network Analyzer description. Laboratory measurement of the scattering parameters of various microwave devices (rat race, Wilkinson divider, etc.). (3 laboratory activity)

[1] David M. Pozar, Microwave Engineering, John Wiley & Sons Inc

[2] Sorrentino Roberto, Bianchi Giovanni, Microwave and RF Engineering, John Wiley & Sons Inc

MICROWAVES (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2018/2019

Anno accademico di erogazione 2018/2019

Anno di corso 1

Semestre Secondo Semestre (dal 04/03/2019 al 04/06/2019)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

Electromagnetic Fields

Microwave course is aimed at providing both theoretical and practical knowledge on the main aspects of microwave engineering. It also serves as the necessary prerequisite for more advanced courses in communication engineering.

After the course the student should be able to

* Apply microwave analysis methods to determine the main properties of high-frequency circuits.

* Apply knowledge on transmission lines and waveguides particularly for their use as elements in impedance matching and filter circuits.

* Design an impedance matching network with either distributed or lumped elements through the Smith Chart.

* Evaluate both analytically and experimentally the scattering parameters of N-Port microwave devices

* Illustrate the main aspects of N-Port networks, microwave filters and resonant cavities

An oral exame is foreseen. It is aimed at verifying the knowledge and understanding of the course topics acquired by the student (maximum overall duration: 45 minutes).

Office Hours: By appointment; contact the professor by email or at the end of class meetings. Official office hours will be defined once the course agenda will be definited.

Introduction: the main differences between low-frequency and hi-frequency circuits (2 hours).

Transmission lines and waveguides: transmission lines theory. Smith chart. Line-Load matching through single and double stub techniques using the Smith chart. Quarter-wave matching. Properties of the most common transmission lines: coaxial cable, microstrip line, coplanar stripline. Properties of the most common waveguides: rectangular, circular, and "ridge" (20 hours). Solutions of assigned exercises and practical examples of use of the Smith Chart. (12 hours).

Microwave junctions. N-port junctions. Scattering matrix. 2-port, 3-port and 4-port cases. (8 hours)

Microwave devices: functional description of the main passive components used in microwave circuits. Attenuators. Circulators. Dividers and combiners (Resistive, T-junction, Wilkinson). Directional couplers theory. Two-hole couplers. Branch-Line. Rat-Race. Magic-T. (12 hours)

Resonant cavities: brief overview on resonant cavities. Rectangular and circular resonant cavities. Application as filters and frequency meters. (4 hours)

Microwave filters: general information on Microwave filters. Main design techniques for a microwave filter. (6 hours)

Passive RFID technology : overview on passive RFID technology. The conjugate matching techniques in the design of RFID tags. (4 hours)

CAD of microwve circuits (Laboratory Activity): Introduction to microwave CAD programs; analysis of microwave circuits. Examples of design of simple microwave circuits. (7 hours)

S-Parameter evaluation (Laboratory Activity): Vector Network Analizer description. Laboratory measurement of the scattering parameters of various microwave devices (rat race, wilkinson divider, etc.). (6 hours)

MICROWAVES (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2017/2018

Anno accademico di erogazione 2017/2018

Anno di corso 1

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

MICROWAVES (ING-INF/02)
SOLUZIONI ELETTROMAGNETICHE PER L'HI-TECH

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 54.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2017/2018

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2018 al 01/06/2018)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

SOLUZIONI ELETTROMAGNETICHE PER L'HI-TECH (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING AND ELECTRONIC TECHNOLOGIES

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2016/2017

Anno accademico di erogazione 2016/2017

Anno di corso 1

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

MICROWAVES (ING-INF/02)
SOLUZIONI ELETTROMAGNETICHE PER L'HI-TECH

Corso di laurea INGEGNERIA DELL'INFORMAZIONE

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea

Crediti 6.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2016/2017

Anno di corso 3

Semestre Secondo Semestre (dal 01/03/2017 al 02/06/2017)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

SOLUZIONI ELETTROMAGNETICHE PER L'HI-TECH (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 81.0

Per immatricolati nel 2015/2016

Anno accademico di erogazione 2015/2016

Anno di corso 1

Semestre Secondo Semestre (dal 29/02/2016 al 03/06/2016)

Lingua ITALIANO

Percorso PERCORSO COMUNE (999)

Sede Lecce

MICROWAVES (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2014/2015

Anno accademico di erogazione 2014/2015

Anno di corso 1

Semestre Secondo Semestre (dal 02/03/2015 al 06/06/2015)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

MICROWAVES (ING-INF/02)
MICROWAVES

Corso di laurea COMMUNICATION ENGINEERING

Settore Scientifico Disciplinare ING-INF/02

Tipo corso di studio Laurea Magistrale

Crediti 9.0

Ripartizione oraria Ore totali di attività frontale: 0.0

Per immatricolati nel 2013/2014

Anno accademico di erogazione 2013/2014

Anno di corso 1

Semestre Secondo Semestre (dal 03/03/2014 al 31/05/2014)

Lingua

Percorso PERCORSO COMUNE (999)

Sede Lecce - Università degli Studi

MICROWAVES (ING-INF/02)

Pubblicazioni

(Dati aggiornati a Ottobre 2022)

Publications on international journals

  1. R. Colella, F.P. Chietera, A. Michel, G. Muntoni, G. Casula, G. Montisci and L. Catarinucci, "Electromagnetic characterisation of conductive 3D‐Printable filaments for designing fully 3D‐Printed antennas", IET Microwaves, Antennas & Propagation, vol. 16, no. 11, pp. 687-698, 2022.
  2. L. Catarinucci, R. Colella, C. Esposito Corcione, C. Ingrosso, A. Greco, F. Ferrari, M. Curri, C. Leo, G. Mandriota, V. Molinaro, T. Montanaro, L. Patrono, S. Sabina, I. Sergi, A. Shumba, L. Spedicato and R. Striani, "Smart IoT system empowered by customized energy-aware wireless sensors integrated in graphene-based tissues to improve workers thermal comfort", Journal of Cleaner Production, vol. 360, p. 132132, 2022
  3. K. Zannas, F. P. Chietera, A. Abdelnour, D. Kaddour, R. Colella, L. Catarinucci, Y. Duroc, and S. Tedjini, “Designing UHF RFID tag antennas with Barcode Shape for dual‐technology identification,” IET Microwaves, Antennas & Propagation, vol. 16, no. 12, pp. 733–742, 2022.
  4. F.P. Chietera, R. Colella, L. Catarinucci, “Dielectric resonators antennas potential unleashed by 3D printing technology: A practical application in the IoT framework,” Electronics (Switzerland), 11 (1), art. no. 64, 2022. DOI: 10.3390/electronics11010064
  5. H.U. Tahseen, L. Yang, L. Catarinucci, “A triple band dual-polarized multi-slotted antenna array for base station applications,” Wireless Netw (2022). https://doi.org/10.1007/s11276-022-02918-w
  6. T. Montanaro, I. Sergi, A. Motroni, A. Buffi, P. Nepa, M. Pirozzi, L. Catarinucci, R. Colella, F.P. Chietera, L. Patrono, “An IoT-Aware Smart System Exploiting the Electromagnetic Behavior of UHF-RFID Tags to Improve Worker Safety in Outdoor Environments, Electronics (Switzerland), 11 (5), art. no. 717, 2022. doi: 10.3390/electronics11050717 – SCOPUS: 2-s2.0-8512540385
  7. M. Merenda, L. Catarinucci, R. Colella, D. Iero, F. Della Corte and R. Carotenuto, "RFID-Based Indoor Positioning Using Edge Machine Learning", IEEE Journal of Radio Frequency Identification, vol. 6, pp. 573-582, 2022.
  8. F.P. Chietera, R. Colella, A. Verma, E. Ferraris, C. Corcione, C. Moraila-Martinez, D. Gerardo, Y. Acid, A. Rivadeneyra and L. Catarinucci, "Laser-Induced Graphene, Fused Filament Fabrication, and Aerosol Jet Printing for Realizing Conductive Elements of UHF RFID Antennas", IEEE Journal of Radio Frequency Identification, vol. 6, pp. 601-609, 2022.
  9. R. Colella, M.R. Tumolo, S. Sabina, C.G. Leo, P. Mincarone, R. Guarino, L. Catarinucci., "Design of UHF RFID Sensor-Tags for the Biomechanical Analysis of Human Body Movements," in IEEE Sensors Journal, vol. 21, no. 13, pp. 14090-14098, 1 July1, 2021, doi: 10.1109/JSEN.2021.3069113 – SCOPUS: 2-s2.0-85103282502.
  10. P. Šolić, A. Leoni, R. Colella, T. Perković, L. Catarinucci and V. Stornelli, "IoT-Ready Energy-Autonomous Parking Sensor Device," in IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4830-4840, 15 March15, 2021, doi: 10.1109/JIOT.2020.3031088, SCOPUS: 2-s2.0-85102384694
  11. R. Colella, F.P. Chietera, L. Catarinucci, “Analysis of FDM and DLP 3D-Printing Technologies to Prototype Electromagnetic Devices for RFID Applications,” (2021) Sensors (Switzerland), 21 (3), art. no. 897, pp. 1-13. SCOPUS: 2-s2.0-85099936628
  12. R. Colella, F. P. Chietera, F. Montagna, A. Greco and L. Catarinucci, "Customizing 3D-Printing for Electromagnetics to Design Enhanced RFID Antennas," in IEEE Journal of Radio Frequency Identification, vol. 4, no. 4, pp. 452-460, Dec. 2020, doi: 10.1109/JRFID.2020.3001043.
  13. L. Catarinucci, R. Colella, S. I. Consalvo, L. Patrono, C. Rollo and I. Sergi, "IoT-Aware Waste Management System Based on Cloud Services and Ultra-Low-Power RFID Sensor-Tags," in IEEE Sensors Journal, vol. 20, no. 24, pp. 14873-14881, 15 Dec.15, 2020, doi: 10.1109/JSEN.2020.3010675.
  14. G. Muntoni, G. Montisci, G. A. Casula, F. P. Chietera, A. Michel, R. Colella, L. Catarinucci, G. Mazzarella, "A Curved 3-D Printed Microstrip Patch Antenna Layout for Bandwidth Enhancement and Size Reduction," in IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 7, pp. 1118-1122, July 2020, doi: 10.1109/LAWP.2020.2990944.
  15. L. Catarinucci, F. P. Chietera and R. Colella, "Permittivity-Customizable Ceramic-Doped Silicone Substrates Shaped With 3-D-Printed Molds to Design Flexible and Conformal Antennas," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 6, pp. 4967-4972, June 2020, doi: 10.1109/TAP.2020.2969748.
  16. F. Ferrari, R. Striani, S. Minosi, R. De Fazio, P. Visconti, L. Patrono, L. Catarinucci, C. Esposito Corcione, A. Greco, “An Innovative IoT-Oriented Prototype Platform for the Management and Valorisation of the Organic Fraction of Municipal Solid Waste,” Journal of Cleaner Production, vol. 247, 2020.
  17. R. Colella, F. P. Chietera and L. Catarinucci, "Electromagnetic Performance Evaluation of UHF RFID Tags with Power Discretization Error Cancellation," in IEEE Transactions on Antennas and Propagation, vol. 67, no. 5, pp. 3545-3549, May 2019.
  18. R. Colella, L. Catarinucci, “X-Band RFID System Exploiting Doppler-Based Microwave Motion Sensors,” vol. 67, no. 10, pp. 6602-6611, 2019.
  19. P. Solic, R. Colella, L. Catarinucci, T. Perkovic, L. Patrono, “Proof of Presence: Novel Vehicle Detection System,” IEEE Wireless Communications, 26 (6), pp. 44-49, 2019.
  20. A. Michel, R. Colella, G.A: Casula, P. Nepa, L. Catarinucci, G. Montisci, G. Mazzarella, G. Manara, "Design Considerations on the Placement of a Wearable UHF-RFID PIFA on a Compact Ground Plane," in IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 3142-3147, June 2018.
  21. R. Colella, L. Catarinucci, “Electromagnetic Design of UHF RFID Tags Enabling a Novel Method to Retrieve Sensor Data,” IEEE Journal of Radio Frequency Identification, Vol 2, pp 23-30, 2018.
  22. R. Colella, A. Michel and L. Catarinucci, "Compact 3-D-Printed Circularly Polarized Antenna for Handheld UHF RFID Readers," in IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 11, pp. 2021-2025, Nov. 2018.
  23. R. Colella and L. Catarinucci, "Wearable UHF RFID Sensor-Tag Based on Customized 3D-Printed Antenna Substrates," in IEEE Sensors Journal, vol. 18, no. 21, pp. 8789-8795, 1 Nov.1, 2018.
  24. R. Colella, A. Rivadeneyra, A.J. Palma, L. Tarricone, L.F. Capitan-Vallvey, L. Catarinucci, J.F. Salmeron, "Comparison of Fabrication Techniques for Flexible UHF RFID Tag Antennas," in IEEE Antennas and Propagation Magazine, vol. 59, no. 5, pp. 159-168, Oct. 2017.
  25. L. Catarinucci, R. Colella, L. Tarricone, “Design of passive RFID sensor tags enhanced by a novel logical communication procedure over LLRP,” (2017) Journal of Communications Software and Systems, 13 (2), pp. 120-124, 2017.
  26. R. Colella, L. Catarinucci, L. Tarricone, “Measurement system for over-the-air evaluation of UHF RFID tags quality,” Wireless Power Transfer, vol. 4, pp.33-41, 2017.
  27. L. Catarinucci, R. Colella, L. Tarricone, “Electromagnetic performance estimation of UHF RFID tags in harsh contexts,” Journal of Communications Software and Systems, 13 (2), pp. 125-133, 2017.
  28. L. Catarinucci, R. Colella, P. Coppola, L. Tarricone, “Microwave characterisation of polylactic acid for 3D-printed dielectrically controlled substrates,” IET Microwaves, Antennas and Propagation, 11 (14), pp. 1-7, 2017.
  29. L. Catarinucci, D. De Donno, L. Mainetti, L. Patrono, M.L. Stefanizzi, L. Tarricone, “An IoT-Aware architecture to improve safety in sports environments,” Journal of Communications Software and Systems, 13 (2), pp. 44-52, 2017.
  30. R. Colella, M. Pasca, L. Catarinucci, L. Tarricone, and S. D'Amico, "High-Sensitivity CMOS RF-DC Converter in HF RFID Band," IEEE Microwave and Wireless Components Letters, vol. 26, pp. 732-734, Sep 2016.
  31. R. Colella, M. Pasca, L. Catarinucci, L. Tarricone, and S. D'Amico, "RF-DC converter for HF RFID sensing applications powered by a near-field loop antenna," Radio Science, vol. 51, pp. 942-950, Jul 2016.
  32. R. Colella, L. Catarinucci, and L. Tarricone, "Improved Battery-Less Augmented RFID Tag: Application on Ambient Sensing and Control," IEEE Sensors Journal, vol. 16, pp. 3484-3485, May 15 2016.
  33. M. Pasca, R. Colella, L. Catarinucci, L. Tarricone, S. D'Amico, and A. Baschirotto, "UHF front-end feeding RFID-based body sensor networks by exploiting the reader signal," Radio Science, vol. 51, pp. 481-489, May 2016.
  34. R. Colella, A. Esposito, L. Catarinucci, and L. Tarricone, "Programming UHF RFID Systems for the Internet of Things," IEEE Antennas and Propagation Magazine, vol. 58, pp. 109-119, Apr 2016.
  35. R. Colella, L. Catarinucci, P. Coppola, and L. Tarricone, "Measurement Platform for Electromagnetic Characterization and Performance Evaluation of UHF RFID Tags," IEEE Transactions on Instrumentation and Measurement, vol. 65, pp. 905-914, Apr 2016.
  36. R. Colella, A. Esposito, L. Catarinucci, L. Tarricone, “Using Battery-Less RFID Tags with Augmented Capabilities in the Internet of Things,” Journal of Communications Software and Systems, 12 (1), pp. 16-23, 2016.
  37. R. Colella, L. Tarricone, and L. Catarinucci, "SPARTACUS: Self-Powered Augmented RFID Tag for Autonomous Computing and Ubiquitous Sensing," IEEE Transactions on Antennas and Propagation, vol. 63 (5), pp. 2272-2281, 2015. DOI: 10.1109/TAP.2015.2407908, 0018-926X
  38. L. Catarinucci, D. De Donno, L. Mainetti, L. Palano, L. Patrono, M. Stefanizzi, and L. Tarricone, "An IoT-Aware Architecture for Smart Healthcare Systems," IEEE Internet of Things Journal, vol. PP – In Press, pp. 1-12, 2015. DOI: 10.1109/JIOT.2015.2417684, 2327-4662
  39. D. De Donno, M. L. Stefanizzi, L. Catarinucci, L. Mainetti, L. Patrono, and L. Tarricone, "Integrating passive UHF RFID tags with wsn nodes: Challenges and opportunities," Journal of Communications Software and Systems, vol. 10, pp. 99-106, 2014. 18456421 (ISSN)
  40. R. Colella, D. De Donno, L. Tarricone, L. Catarinucci, “Unconventional UHF RFID Tags with Sensing and Computing Capabilities,” Journal of Communications Software and Systems, vol. 10, pp. 81-86, 2014. 18456421 (ISSN)
  41. D. De Donno, L. Catarinucci, and L. Tarricone, "RAMSES: RFID augmented module for smart environmental sensing," IEEE Transactions on Instrumentation and Measurement, vol. 63, pp. 1701-1708, 2014. DOI: 10.1109/TIM.2014.2298692, 00189456 (ISSN)
  42.             D. De Donno, L. Catarinucci, and L. Tarricone, "A battery-assisted sensor-enhanced RFID tag enabling heterogeneous wireless sensor networks," IEEE Sensors Journal, vol. 14, pp. 1048-1055, 2014. DOI: 10.1109/JSEN.2013.2293177, 1530437X (ISSN)
  43.             D. De Donno, L. Catarinucci, and L. Tarricone, "Ultralong-range RFID-based wake-up radios for wireless sensor networks," IEEE Sensors Journal, vol. 14, pp. 4016-4017, 2014. DOI: 10.1109/JSEN.2014.2356209, 1530437X (ISSN)
  44.             I. Cuiñas, R. Newman, M. Trebar, L. Catarinucci, and A. A. Melcon, "Wireless corner: RFID-based traceability along the food-production chain," IEEE Antennas and Propagation Magazine, vol. 56, pp. 196-207, 2014. DOI: 10.1109/MAP.2014.6837090, 10459243 (ISSN)
  45. L. Catarinucci, S. Guglielmi, R. Colella, and L. Tarricone, "Compact switched-beam antennas enabling novel power-efficient wireless sensor networks," IEEE Sensors Journal, vol. 14, pp. 3252-3259, 2014. DOI: 10.1109/JSEN.2014.2326971, 1530437X (ISSN)
  46. L. Catarinucci, S. Guglielmi, R. Colella, and L. Tarricone, "Pattern-reconfigurable antennas and smart wake-up circuits to decrease power consumption in WSN nodes," IEEE Sensors Journal, vol. 14, pp. 4323-4324, 2014. DOI: 10.1109/JSEN.2014.2360939, 1530437X (ISSN)
  47. L. Catarinucci, R. Colella, L. Mainetti, L. Patrono, S. Pieretti, I. Sergi, and L. Tarricone, "Smart RFID antenna system for indoor tracking and behavior analysis of small animals in colony cages," IEEE Sensors Journal, vol. 14, pp. 1198-1206, 2014. DOI: 10.1109/JSEN.2013.2293594, 1530437X (ISSN)
  48. L. Catarinucci, R. Colella, L. Mainetti, L. Patrono, S. Pieretti, A. Secco, and I. Sergi, "An animal tracking system for behavior analysis using radio frequency identification," Lab Animal, vol. 43, pp. 321-327, 2014. DOI: 10.1038/laban.547, 00937355 (ISSN)
  49. L. Catarinucci, R. Colella, G. Del Fiore, L. Mainetti, V. Mighali, L. Patrono, and M. L. Stefanizzi, "A cross-layer approach to minimize the energy consumption in wireless sensor networks," International Journal of Distributed Sensor Networks, vol. 2014, 2014. DOI: 10.1155/2014/268284, 15501329 (ISSN)
  50. D. De Donno, A. Esposito, G. Monti, L. Catarinucci, and L. Tarricone, "GPU-based acceleration of computational electromagnetics codes," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 26, pp. 309-323, 2013. DOI: 10.1002/jnm.1849, 08943370 (ISSN)
  51. D. De Donno, L. Catarinucci, and L. Tarricone, "An UHF RFID energy-harvesting system enhanced by a DC-DC charge pump in silicon-on-insulator technology," IEEE Microwave and Wireless Components Letters, vol. 23, pp. 315-317, 2013. DOI: 10.1109/LMWC.2013.2258002, 15311309 (ISSN)
  52. D. De Donno, L. Catarinucci, A. Di Serio, and L. Tarricone, "A long-range computational RFID tag for temperature and acceleration sensing applications," Progress In Electromagnetics Research C, vol. 45, pp. 223-235, 2013. 19378718 (ISSN)
  53. L. Catarinucci, S. Tedesco, and L. Tarricone, "Customized ultra high frequency radio frequency identification tags and reader antennas enabling reliable mobile robot navigation," IEEE Sensors Journal, vol. 13, pp. 783-791, 2013. DOI: 10.1109/JSEN.2012.2227715, 1530437X (ISSN)
  54. L. Catarinucci, S. Guglielmi, L. Patrono, and L. Tarricone, "Switched-beam antenna for wireless sensor network nodes," Progress In Electromagnetics Research C, vol. 39, pp. 193-207, 2013. 19378718 (ISSN)
  55. L. Catarinucci, S. Guglielmi, L. Mainetti, V. Mighali, L. Patrono, M. L. Stefanizzi, and L. Tarricone, "An energy-efficient MAC scheduler based on a switched-beam antenna for wireless sensor networks," Journal of Communications Software and Systems, vol. 9, pp. 117-127, 2013. 18456421 (ISSN)
  56. L. Catarinucci, R. Colella, and L. Tarricone, "Enhanced UHF RFID sensor-tag," IEEE Microwave and Wireless Components Letters, vol. 23, pp. 49-51, 2013. DOI: 10.1109/LMWC.2012.2234092, 15311309 (ISSN)
  57. L. Catarinucci, R. Colella, and L. Patrono, "On the use of passive UHF RFID tags in the pharmaceutical supply chain: A novel enhanced tag versus high-performance commercial tags," International Journal of Radio Frequency Identification Technology and Applications, vol. 4, pp. 122-137, 2013. DOI: 10.1504/IJRFITA.2013.054663, 17453216 (ISSN)
  58. L. Catarinucci, R. Colella, L. Mainetti, V. Mighali, L. Patrono, I. Sergi, and L. Tarricone, "Performance evaluation of a novel animals tracking system based on UHF RFID technology," Journal of Communications Software and Systems, vol. 9, pp. 4-13, 2013. 18456421 (ISSN)
  59. L. Catarinucci, R. Colella, L. Mainetti, V. Mighali, L. Patrono, I. Sergi, and L. Tarricone, "Near field UHF RFID antenna system enabling the tracking of small laboratory animals," International Journal of Antennas and Propagation, vol. 2013, 2013. DOI: 10.1155/2013/713943, 16875869 (ISSN)
  60. L. Catarinucci, R. Colella, L. Mainetti, V. Mighali, L. Patrono, S. Pieretti, I. Sergi, and L. Tarricone, "An RFID tracking system supporting the behavior analysis of colonial laboratory animals," International Journal of RF Technologies: Research and Applications, vol. 5, pp. 63-80, 2013. DOI: 10.3233/RFT-130048, 17545730 (ISSN)
  61. D. De Donno, L. Tarricone, L. Catarinucci, V. Lakafosis, and M. M. Tentzeris, "Performance enhancement of the RFID EPC Gen2 protocol by exploiting collision re-covery," Progress In Electromagnetics Research B, pp. 53-72, 2012. 19376472 (ISSN)
  62. L. Catarinucci, S. Tedesco, D. De Donno, and L. Tarricone, "Platform-robust passive UHF RFID tags: A case-study in robotics," Progress In Electromagnetics Research C, vol. 30, pp. 27-39, 2012. DOI: 10.2528/PIERC12042002, 19378718 (ISSN)
  63. L. Catarinucci and L. Tarricone, "New algorithms for the Specific Absorption Rate numerical evaluation based on spherical averaging volumes," Progress In Electromagnetics Research B, pp. 427-445, 2012. DOI: 10.2528/PIERB12091502, 19376472 (ISSN)
  64. L. Catarinucci, G. Monti, and L. Tarricone, "Metal foams for electromagnetics: Experimental, numerical and analytical characterization," Progress In Electromagnetics Research B, pp. 1-18, 2012. 19376472 (ISSN)
  65. L. Catarinucci, D. De Donno, R. Colella, F. Ricciato, and L. Tarricone, "A cost-effective SDR platform for performance characterization of RFID tags," IEEE Transactions on Instrumentation and Measurement, vol. 61, pp. 903-911, 2012. DOI: 10.1109/TIM.2011.2174899, 00189456 (ISSN)
  66. L. Catarinucci, R. Colella, and L. Tarricone, "Design, development, and performance evaluation of a compact and long-range passive UHF RFID tag," Microwave and Optical Technology Letters, vol. 54, pp. 1335-1339, 2012. DOI: 10.1002/mop.26777, 08952477 (ISSN)
  67. L. Catarinucci, R. Colella, and L. Tarricone, "Smart prototyping techniques for UHF RFID tags: Electromagnetic characterization and comparison with traditional approaches," Progress in Electromagnetics Research, vol. 132, pp. 91-111, 2012. 10704698 (ISSN)
  68. L. Catarinucci, R. Colella, A. Esposito, L. Tarricone, and M. Zappatore, "RFID sensor-tags feeding a context-aware rule-based healthcare monitoring system," Journal of Medical Systems, vol. 36, pp. 3435-3449, 2012. DOI: 10.1007/s10916-011-9794-y, 01485598 (ISSN)
  69. L. Catarinucci, R. Colella, M. De Blasi, L. Patrono, and L. Tarricone, "Enhanced UHF RFID tags for drug tracing," Journal of Medical Systems, vol. 36, pp. 3451-3462, 2012. DOI: 10.1007/s10916-011-9790-2, 01485598 (ISSN)
  70. L. Catarinucci, R. Colella, M. De Blasi, L. Patrono, and L. Tarricone, "Experimental performance evaluation of passive UHF RFID tags in electromagnetically critical supply chains," Journal of Communications Software and Systems, vol. 7, pp. 59-70, 2011. 18456421 (ISSN)
  71. G. Monti, L. Catarinucci, and L. Tarricone, "Broad-band dipole for RFID applications," Progress In Electromagnetics Research C, vol. 12, pp. 163-172, 2010. DOI: 10.2528/PIERC10012606, 19378718 (ISSN)
  72. G. Monti, L. Catarinucci, and L. Tarricone, "New materials for electromagnetic shielding: Metal foams with plasma properties," Microwave and Optical Technology Letters, vol. 52, pp. 1700-1705, 2010. DOI: 10.1002/mop.25309, 08952477 (ISSN)
  73. Esposito, L. Tarricone, M. Zappatore, L. Catarinucci, and R. Colella, "A framework for context-aware home-health monitoring," International Journal of Autonomous and Adaptive Communications Systems, vol. 3, pp. 75-91, 2010. DOI: 10.1504/IJAACS.2010.030313, 17548632 (ISSN)
  74. D. De Donno, A. Esposito, L. Tarricone, and L. Catarinucci, "Introduction to GPU computing and CUDA programming: A case study on FDTD," IEEE Antennas and Propagation Magazine, vol. 52, pp. 116-122, 2010. DOI: 10.1109/MAP.2010.5586593, 10459243 (ISSN)
  75. E. Piuzzi, A. Cataldo, and L. Catarinucci, "Enhanced reflectometry measurements of permittivities and levels in layered petrochemical liquids using an "in-situ" coaxial probe," Measurement: Journal of the International Measurement Confederation, vol. 42, pp. 685-696, 2009. DOI: 10.1016/j.measurement.2008.11.002, 02632241 (ISSN)
  76. G. Monti, L. Catarinucci, and L. Tarricone, "Compact Microstrip antenna for RFID applications," Progress In Electromagnetics Research Letters, vol. 8, pp. 191-199, 2009.
  77. L. Catarinucci and L. Tarricone, "A parallel graded-mesh FDTD algorithm for human-antenna interaction problems," International Journal of Occupational Safety and Ergonomics, vol. 15, pp. 45-52, 2009. 10803548 (ISSN)
  78. L. Catarinucci and L. Tarricone, "On the use of advanced numerical models for the evaluation of dosimetric parameters and the verification of exposure limits at workplaces," Radiation Protection Dosimetry, vol. 137, pp. 218-222, 2009. DOI: 10.1093/rpd/ncp222, 01448420 (ISSN)
  79. L. Catarinucci, R. Colella, and L. Tarricone, "A cost-effective UHF RFID tag for transmission of generic sensor data in wireless sensor networks," IEEE Transactions on Microwave Theory and Techniques, vol. 57, pp. 1291-1296, 2009. DOI: 10.1109/TMTT.2009.2017296, 00189480 (ISSN)
  80. Cataldo, G. Monti, E. De Benedetto, G. Cannazza, L. Tarricone, and L. Catarinucci, "Assessment of a TD-based method for characterization of antennas," IEEE Transactions on Instrumentation and Measurement, vol. 58, pp. 1412-1419, 2009. DOI: 10.1109/TIM.2008.2009199, 00189456 (ISSN)
  81. Cataldo, L. Catarinucci, L. Tarricone, F. Attivissimo, and E. Piuzzi, "A combined TD-FD method for enhanced reflectometry measurements in liquid quality monitoring," IEEE Transactions on Instrumentation and Measurement, vol. 58, pp. 3534-3543, 2009. DOI: 10.1109/TIM.2009.2018009, 00189456 (ISSN)
  82. L. Catarinucci, M. Cappelli, R. Colella, and L. Tarricone, "A novel low-cost multisensor-tag for RFID applications in healthcare," Microwave and Optical Technology Letters, vol. 50, pp. 2877-2880, 2008. DOI: 10.1002/mop.23837, 08952477 (ISSN)
  83. Cataldo, L. Catarinucci, L. Tarricone, F. Attivissimo, and A. Trotta, "A frequency-domain method for extending TDR performance in quality determination of fluids," Measurement Science and Technology, vol. 18, pp. 675-688, 2007. DOI: 10.1088/0957-0233/18/3/018, 09570233 (ISSN)
  84. L. Catarinucci, P. Palazzari, and L. Tarricone, "Human exposure to the near field of radiobase antennas - A full-wave solution using parallel FDTD," IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 935-940, 2003. DOI: 10.1109/TMTT.2003.808695, 00189480 (ISSN)
  85. L. Catarinucci, P. Palazzari, and L. Tarricone, "On the use of numerical phantoms in the study of the human-antenna interaction problem," IEEE Antennas and Wireless Propagation Letters, vol. 2, pp. 43-45, 2003. DOI: 10.1109/LAWP.2003.811329, 15361225 (ISSN)
  86. L. Catarinucci, P. Palazzari, and L. Tarricone, "Parallel FD-TD simulation of radiobase antennae," Radiation Protection Dosimetry, vol. 97, pp. 409-413, 2001. 01448420 (ISSN)

 

Review on international journals

  1. Cuiñas, R. Newman, M. Trebar, and L. Catarinucci, "Traceability of goods by radio systems: Proposals, techniques, and applications," International Journal of Antennas and Propagation, vol. 2013, 2013. DOI: 10.1155/2013/616138, 16875869 (ISSN)

 

Publications on national journals

  1. L. Catarinucci, P. Palazzari, L. Tarricone, “Pogettazione di antenne per telefoni cellulari tramite modelli bioelettromagnetici integrati,” Scienza&Business – Interscience Press, Anno II, N° 1-2, pp.  35-42, Feb. 2000.

 

Book chapter with international diffusion

  1. L. Catarinucci, A. Esposito, L. Tarricone, M. Zappatore and R. Colella, “Smart Data Collection and Management in Heterogeneous Ubiquitous Healthcare Biomedical Engineering,” in Biomedical Engineering: Trends in Electronics, Communications and Software, Book edited by: Anthony N. Laskovski, pp. 685-710, InTech, January 2011. 978-953-307-475-7 (ISBN)
  2. L. Catarinucci, R. Colella, M. De Blasi, L. Patrono, L. Tarricone, “High Performance UHF RFID Tags for Item-level Tracing Systems in Critical Supply Chains,” in Current Trends and Challenges in RFID edited by: Cornel Turcu, , pp 187-208, InTech, 2011. 978-953-307-201-2 (ISBN)
  3. A. Esposito, L. Tarricone, M. Zappatore, L. Catarinucci, R. Colella, A. Di Bari, “A Framework for Context-Aware Home-Health Monitoring,” in: F.Sandnes, Y. Zhang, C. Rong, L.T. Yang, J. Ma (Eds.), "Ubiquitous  Intelligence and Computing,” LNCS 5061, Springer, Springer Berlin Heidelberg New York, 2008. 0302-9743 (ISSN),  3-540-69292-4 (ISBN)
  4. L. Catarinucci, G. Monti, P. Palazzari, and L. Tarricone, "Parallel grid-enabled FDTD for the characterization of metamaterials," in Advances in Information Technologies for Electromagnetics, ed: Springer Netherlands, 2006, pp. 223-264. DOI: 10.1007/978-1-4020-4749-5_8, 1402047487 (ISBN); 9781402047480 (ISBN)

 

Publications on proceedings of international conferences

  1. F. P. Chietera, R. Colella, M. Pirozzi, L. Di Donato, L. Tomassini, A. Ferraro, and L. Catarinucci, “A flexible 3D-printed UHF RFID tag for worker-safety applications,” 2022 7th International Conference on Smart and Sustainable Technologies (SimTech), 2022.
  2. F. P. Chietera, R. Colella, and L. Catarinucci, “3D-printed fractal UHF RFID tag antenna,” 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), 2022.
  3. H. U. Tahseen, R. Colella, F. P. Chietera, L. Yang, and L. Catarinucci, “Dual-band dual-polarized multi-slotted antenna for sub-6 ghz IOT applications,” 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), 2022.
  4. L. Catarinucci, F. P. Chietera, R. Colella, L. Di Donato, T. Montanaro, L. Patrono, and I. Sergi, “An IOT smart system to ensure safety in industrial working environments through a 2.4 GHz radio controllable interface,” 2022 7th International Conference on Smart and Sustainable Technologies (SpliTech), 2022.
  5. F. P. Chietera, R. Colella and L. Catarinucci, "A Novel Design for Flexible and Conformable 3D-Printed Dielectric Resonator Antennas for WiFi and IoT Applications," 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 2022, pp. 1-4, doi: 10.1109/FLEPS53764.2022.9781491.
  6. R. Colella, F. Chietera, G. Montisci, G. Muntoni, G. Casula and L. Catarinucci, "Electromagnetic Evaluation of Conductive and Dielectric Thermoplastic Materials Suitable for Designing Fully-3D-Printable RF Devices", 2022 Microwave Mediterranean Symposium (MMS), pp. 1-4, 2022, doi: 10.1109/MMS55062.2022.9825578
  7. L. Catarinucci, F. P. Chietera and R. Colella, "Recent Activities in Rfid Applications Empowered by 3D Printing at UniSalento," 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA), 2021, pp. 244-247, doi: 10.1109/RFID-TA53372.2021.9617363.
  8. R. Colella, L. Spedicato, C.G. Leo, S. Sabina, Velimir Čongradac, Ognjen Bagatin, L. Catarinucci, "Design and Technology Transfer of RFID-Based Medical Sensing Devices," 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA), 2021, pp. 191-194, doi: 10.1109/RFID-TA53372.2021.9617308.
  9. F. P. Chietera, R. Colella, A. Verma, E. Ferraris, C. E. Corcione and L. Catarinucci, "Fully 3D-printed UHF RFID Antennas: Technological Comparison to Realize Conductive Elements," 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA), 2021, pp. 215-218, doi: 10.1109/RFID-TA53372.2021.9617351.
  10. F. P. Chietera, R. Colella and L. Catarinucci, "The Promising Role of 3D-printed Dielectric Resonator Antennas in the IoT Framework," 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), 2021, pp. 1-4, doi: 10.23919/SpliTech52315.2021.9566416
  11. I. Sergi, L. Catarinucci, T. Montanaro, R. Colella, A. T. Shumba, S. Del Ferraro, P. Lenzuni, L. Patrono, "An IoT-aware smart system to detect thermal comfort in industrial environments," 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), 2021, pp. 1-6, doi: 10.23919/SpliTech52315.2021.9566378.
  12. M. Merenda, L. Catarinucci, R. Colella, F. G. Della Corte and R. Carotenuto, "Exploiting RFID technology for Indoor Positioning," 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), 2021, pp. 1-5, doi: 10.23919/SpliTech52315.2021.9566443.
  13. R. Colella, M.R. Tumolo, S. Sabina, C.G. Leo, P. Mincarone, R. Guarino, L. Catarinucci, "Customized UHF RFID Sensor Tags to Feed Biomechanical Models," 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), 2021, pp. 1-4, doi: 10.23919/SpliTech52315.2021.9566343.
  14. I. Rakotomalala, S. Tedjini, R. Colella, F. P. Chietera, P. Lemaitre-Auger and L. Catarinucci, "On Increasing of Read Range of Miniaturized UHF Tags," 2020 50th European Microwave Conference (EuMC), Utrecht, Netherlands, 2021, pp. 804-807, doi: 10.23919/EuMC48046.2021.9338034.
  15. A. Rivadeneyra, J.F. Salmeron, N. Rodriguez, D.P. Morales, R. Colella, F.P. Chietera, L. Catarinucci, "Laser-Fabricated Antennas for RFID Applications," 2020 50th European Microwave Conference (EuMC), Utrecht, Netherlands, 2021, pp. 812-815, doi: 10.23919/EuMC48046.2021.9338127.
  16. A. Buffi, L. Catarinucci, L. Di Donato, R. Gabbrielli, L. Landi, R. Melloni and L. Patrono, "An Innovative Integrated Smart System for the Safe Management of De-Energization in Maintenance Activities of Assemblies of Machinery", Proceedings of the 31st European Safety and Reliability Conference (ESREL 2021), 2021.
  17. R. Colella, F. P. Chietera, L. Catarinucci, "Yagi-Uda Antenna with Fully 3D-Printed Bow-Tie Elements," 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 2020, pp. 62-66, doi: 10.1109/MTTW51045.2020.9245029.
  18. R. Colella, F. P. Chietera, L. Catarinucci, “3D-printed Tunable UHF RFID PIFA Realized with BaTiO3 Enhanced PLA for Multipurpose Applications,” URSI General Assembly (URSI GASS 2020), 29 Aug. -5 Sept. 2020, Rome, Italy. (Invited)
  19. A. Rivadeneyra, J. Salmeron, N. Rodriguez, D. Morales, R. Colella, F. Chietera and L. Catarinucci, "Laser-Fabricated Antennas for RFID Applications", 2020 50th European Microwave Conference (EuMC), 2021. (invited).
  20. R. Colella, F. P. Chietera, L. Catarinucci, “Digital Light Processing as One of the Promising 3D Printing Technologies in Electromagnetics: Application on RFID,” accepted for Splitech 2020, 23-26 Sept. 2020, Split-Bol, Croatia.
  21. L. Catarinucci, S. Tedjini, R. Colella, F. P. Chietera, K. Zannas and D. Kaddour, "3D-Printed Barcodes as RFID Tags," 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 2020, pp. 1-4, doi: 10.1109/iWAT48004.2020.1570613640. – INVITED PAPER
  22. R. Colella, L. Catarinucci and A. Michel, "Circularly Polarized Antenna in 3D Printing Technology to Feed a Wearable Fully-Integrated WiFi-RFID Reader for Biomedical Applications," 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 2020, pp. 1-4, doi: 10.1109/iWAT48004.2020.1570616251. – INVITED PAPER
  23. G. A. Casula, R. Colella, Z. N. Chen, L. Catarinucci and G. Mazzarella, "Conformal Circularly-Polarized Shoe-Integrated Antenna based on Leather Substrate and Conductive Fabric for Bluetooth Low Energy Body-Centric Links," 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 2020, pp. 1-3, doi: 10.1109/iWAT48004.2020.1570616398.
  24. R. Colella, F. P. Chietera and L. Catarinucci, "Considerations on Rigorous UHF RFID Tag Electromagnetic Performance Evaluation in Non-Anechoic Environments," 2020 International Workshop on Antenna Technology (iWAT), Bucharest, Romania, 2020, pp. 1-3, doi: 10.1109/iWAT48004.2020.1570615275.
  25. R. Colella, F.P.Chietera, L.Catarinucci, J. F. Salmeron, A. Rivadeneyra, M. A. Carvajal, A. J. Palma, L. F. Capitan-Vallvey, “Fully3D-Printed RFID Tags based on Printable Metallic Filament: Performance Comparison with other Fabrication Techniques,” accepted for International Conference on Electromagnetics in Advanced Applications (ICEAA 2019) in conjunction with IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC 2019), Granada, Spain, September 9-13, 2019.
  26. R. Colella and L. Catarinucci, "10.525 GHz Backscattering RFID System Based on Doppler Radar Technology for 5G Applications and Telemedicine," 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), Rome, Italy, 2019, pp. 3689-3695, doi: 10.1109/PIERS-Spring46901.2019.9017344.
  27. R. Colella et al., "Electromagnetic Analysis and Performance Comparison of Fully 3D-printed Antennas," 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), Rome, Italy, 2019, pp. 964-970, doi: 10.1109/PIERS-Spring46901.2019.9017888.
  28. R. De Fazio, C. Esposito Corcione, A. Greco, F. Ferrari, R. Striani, L. Catarinucci, F.P. Chietera, R. Colella, L. Patrono, V. Mighali, I. Sergi, P. Visconti, “Sensors-based treatment system of the organic waste with RFID identification and on-cloud traceability,” Proceedings of 8th International Workshop on Advances in Sensors and Interfaces, IWASI 2019, Otranto, Italy, pp. 245-250.
  29. L. Catarinucci, R. Colella, S. I. Consalvo, L. Patrono, A. Salvatore and I. Sergi, "IoT-oriented Waste Management System based on new RFID-Sensing Devices and Cloud Technologies," 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), pp. 1-5, Bol and Split, Croatia, 2019.
  30. R. Colella, B. Chiffi, N. Rusković and L. Catarinucci, "RFID Sensing System Based on UHF Platform-Tolerant Antenna for Harsh Industrial Environments," 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), pp. 1-4, Bol and Split, Croatia, 2019.
  31. R. Colella, F. P. Chietera, L. Catarinucci, J. F. Salmeron, A. Rivadeneyra, M. A. Carvajal, A. J. Palma, L. F. Capitán-Vallvey, "Fully 3D-Printed RFID Tags based on Printable Metallic Filament: Performance Comparison with other Fabrication Techniques," 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pp. 253-257, Granada, Spain, 2019.
  32. R. Colella, F. P. Chietera, F. Montagna, A. Greco and L. Catarinucci, "On the Use of Additive Manufacturing 3D-Printing Technology in RFID Antenna Design," 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), pp. 433-438, Pisa, Italy, 2019.
  33. G. A. Casula, R. Colella, L. Catarinucci and Z. N. Chen, "A 3D-Printed Wideband Antenna for UHF RFID," 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), pp. 384-386, Pisa, Italy, 2019.
  34. R. Colella and L. Catarinucci, "Adding RFID Capabilities to IoT Technologies: Proof-of-Concept on Microwave Doppler Sensors," 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), pp. 410-414, Pisa, Italy, 2019. (invited)
  35. E. Cirillo, P. Minosi, F. Marzoli, I. Sergi, R. Colella, L. Patrono, L. Catarinucci, S. Pieretti, "Opportunity to Analyze Laboratory Mice Behavior by Tracking Systems based on UHF RFID Technology: pros and cons," 2019 IEEE International Conference on RFID Technology and Applications (RFID-TA), pp. 427-432, Pisa, Italy, 2019.
  36. R. Colella and L. Catarinucci, "3D printed wearable sensor tag based on UHF RFID ICs implementing a novel interrogation modality," 2018 International Conference on IC Design & Technology (ICICDT), Otranto, Italy, pp. 17-20, 2018.
  37. R. Colella and L. Catarinucci, "Application of the Pseudo-BAP mode to a 3D-Printed Wearable UHF RFID Tag with Sensing Capabilities," 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech), Split, pp. 1-5, 2018.
  38. R. Colella and L. Catarinucci, “Reduction of Power-Discretization Effects in UHF RFID Tag Performance Estimation Systems based on Off-The-Shelf Programmable Readers," 2018 3rd International Conference on Smart and Sustainable Technologies (SpliTech), Split, pp. 1-5, 2018.
  39. R. Colella, Catarinucci, “Wearable UHF RFID Sensor Tag in 3D-Printing Technology for Body Temperature Monitoring,” 2018 2nd URSI Atlantic Radio Science Meeting, AT-RASC 2018, Gran Canaria; Spain; May 28 – June 1, 2018.
  40. R. Colella, Catarinucci, “Single-Chip Gen2-Compliant UHF RFID Sensor Tags Based on Novel Pseudo-BAP Mode,” 2018 2nd URSI Atlantic Radio Science Meeting, AT-RASC 2018, Gran Canaria; Spain; May 28 – June 1, 2018.
  41. P. Nepa, A. Michel, G. Manara, R. Colella, L. Catarinucci, L. Tarricone, G. A. Casula, G. Mazzarella, G. Montisci, “Experimental Assessment of a Design Criterion for RFID Wearable Antennas,” Proceedings of 2017 International Applied Computational Electromagnetics Society Symposium, ACES 2017, pp. 1-2, 2017.
  42. L. Catarinucci, R. Colella and L. Tarricone, "Exploiting 3D-printing in passive UHF RFID electromagnetic projects," 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, pp. 1-4, 2017.
  43. R. Colella, L. Catarinucci, A. Michel and P. Nepa, "Design of a 3D-printed circularly polarized antenna for portable UHF RFID readers," 2017 IEEE International Conference on RFID Technology & Application (RFID-TA), Warsaw, pp. 225-228, 2017.
  44. P. Nepa, A. Michel, G. Manara, R. Colella, L. Catarinucci, L. Tarricone, G.A. Casula, G. Mazzarella, G. Montisci, "Experimental validation of a design criterion for UHF ungrounded wearable antennas for RFID applications," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, 2017, pp. 2437-2438, 2017.
  45. L. Catarinucci and R. Colella, "Design of UHF RFID devices based on 3D-printing technology," 2017 2nd International Multidisciplinary Conference on Computer and Energy Science (SpliTech), Split, 2017, pp. 1-4.
  46. R. Colella, L. Catarinucci, and L. Tarricone, "Improved RFID Tag Characterization System: Use Case in the IoT Arena," 2016 IEEE International Conference on RFID Technology and Applications (RFID-TA), Shunde, China, pp. 172-176, 2016.
  47. R. Colella, L. Catarinucci, and L. Tarricone, "Passive RFID Tag with Sensing and Reasoning Capabilities for Building Automation," 2016 International Multidisciplinary Conference on Computer and Energy Science (Splitech), Split, Croatia, pp. 173-175, 2016.
  48. R. Colella, L. Catarinucci, and L. Tarricone, "Evaluating the Suitability of Specific RFID Tags for IoT Applications Through a New Characterization Platform," 2016 International Multidisciplinary Conference on Computer and Energy Science (Splitech), Split, Croatia, pp. 176-178, 2016.
  49. R. Colella, L. Catarinucci, and L. Tarricone, "EM Design of a Passive RFID-Based Device with Sensing and Reasoning Capabilities," 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 2015.
  50. R. Colella, L. Catarinucci, P. Coppola, and L. Tarricone, "Cost-Effective Electromagnetic Characterization System for Radiation Pattern and Sensitivity Estimation of UHF RFID Tags," 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 2015.
  51. M. Pasca, L. Catarinucci, R. Colella, D. De Donno, L. Tarricone, and S. D'Amico, "A HF-RFID,-19 dBm Sensitivity Fully Integrated RF-DC Voltage Multiplier," 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 2015.
  52. M. Pasca, L. Catarinucci, R. Colella, D. De Donno, L. Tarricone, S. D'Amico, and A. Baschirotto, "A UHF-RFID Power Management Circuit for Body Sensor Networks," 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 2015.
  53. R. Colella, L. Catarinucci, P. Coppola, and L. Tarricone, "Characterization System for Radiation Pattern and Sensitivity Estimation of UHF RFID Tags," 2015 Ieee International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting, pp. 1754-1755, Vancouver, Canada, 2015.
  54. M. Pasca, S. D'Amico, V. Chironi, L. Catarinucci, D. de Donno, R. Colella, and L. Tarricone, "A-19dBm Sensitivity Integrated RF-DC Converter with Regulated Output Voltage for Powering UHF Wireless Sensors," 2015 6th Ieee International Workshop on Advances in Sensors and Interfaces (Iwasi), Gallipoli, Italy, pp. 168-171, 2015.
  55. R. Colella, D. De Donno, L. Tarricone, and L. Catarinucci, "Advances in the Design of Smart, Multi-Function, RFID-Enabled Devices," in 2014 IEEE Antennas and Propagation Society International Symposium, APSURSI 2014, Memphis, TN, USA, pp. 1678-1679, July 2014. DOI: 10.1109/APS.2014.6905165, 15223965 (ISSN); 9781479935406 (ISBN)
  56. L. Catarinucci, S. Guglielmi, R. Colella, and L. Tarricone, "Switched-beam antenna for WSN nodes enabling hardware-driven power saving," in 2014 Federated Conference on Computer Science and Information Systems, FedCSIS 2014, Warsaw, Poiland, pp. 1079-1086, September 2014. DOI: 10.15439/2014F82, 9788360810583 (ISBN)
  57. L. Catarinucci, D. De Donno, L. Mainetti, L. Palano, L. Patrono, M. L. Stefanizzi, and L. Tarricone, "Integration of UHF RFID and WSN technologies in healthcare systems," in 2014 IEEE RFID Technology and Applications Conference, RFID-TA 2014, Tampere, Finland, pp. 289-294, September 2014. DOI: 10.1109/RFID-TA.2014.6934245, 9781479946808 (ISBN)
  58. D. De Donno, R. Colella, L. Tarricone, and L. Catarinucci, “Novel Fully-Passive Multifunction RFID-Enabled Devices,” in 2014 European Microwave Conference, EuMC 2014, Rome, Italy, October 2014.
  59.             D. De Donno, L. Catarinucci, and L. Tarricone, "Enabling self-powered autonomous wireless sensors with new-generation I2C-RFID chips," in 2013 IEEE MTT-S International Microwave Symposium Digest, MTT 2013, Seattle, WA, 2013. DOI: 10.1109/MWSYM.2013.6697449, 0149645X (ISSN); 9781467361767 (ISBN)
  60.             L. Catarinucci, R. Colella, D. De Donno, and L. Tarricone, "Fully-passive devices for RFID smart sensing," (Invited) in 2013 IEEE Antennas and Propagation Society International Symposium, APSURSI 2013, Orlando, FL, 2013, pp. 2311-2312. DOI: 10.1109/APS.2013.6711814, 15223965 (ISSN); 9781467353175 (ISBN)
  61.             L. Catarinucci, R. Colella, D. De Donno, and L. Tarricone, "RFID augmented devices for autonomous sensing and computation," in 2013 43rd European Microwave Conference, EuMC 2013 - Held as Part of the 16th European Microwave Week, EuMW 2013, Nuremberg, 2013, pp. 999-1002. 9782874870316 (ISBN)
  62.             G. Monti, L. Catarinucci, C. Vasanelli, and L. Tarricone, "3D patch antenna using a cardbord substrate for RFID reader applications," in 2012 9th European Radar Conference, EuRAD 2012 - Held as Part of 15th European Microwave Week, EuMW 2012, Amsterdam, 2012, pp. 558-561. 9782874870293 (ISBN)
  63.             G. Monti, L. Catarinucci, C. Vasanelli, and L. Tarricone, "3D patch antenna using a cardbord substrate for RFID reader applications," in 2012 42nd European Microwave Conference, EuMC 2012 - Held as Part of 15th European Microwave Week, EuMW 2012, Amsterdam, 2012, pp. 884-887. 9782874870279 (ISBN)
  64.             D. De Donno, L. Catarinucci, R. Colella, F. Ricciato, and L. Tarricone, "Differential RCS and sensitivity calculation of RFID tags with software-defined radio," in 2012 6th IEEE Radio and Wireless Week, RWW 2012 - 2012 IEEE Radio and Wireless Symposium, RWS 2012, Santa Clara, CA, 2012, pp. 9-12. DOI: 10.1109/RWS.2012.6175347, 9781457711541 (ISBN)
  65.             L. Catarinucci, S. Tedesco, and L. Tarricone, "On the use of UHF RFID antenna systems customized for robotic applications," in Joint 2012 IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, APSURSI 2012, Chicago, IL, 2012. DOI: 10.1109/APS.2012.6349361, 15223965 (ISSN); 9781467304627 (ISBN)
  66.             L. Catarinucci, R. Colella, and L. Tarricone, "Prototyping flexible UHF RFID tags through rapid and effective unconventional techniques: Validation on label-type sensor-tag," in 2012 IEEE International Conference on RFID-Technologies and Applications, RFID-TA 2012, Nice, 2012, pp. 176-181. DOI: 10.1109/RFID-TA.2012.6404506, 9781467346566 (ISBN)
  67.             L. Catarinucci, R. Colella, L. Mainetti, V. Mighali, L. Patrono, I. Sergi, and L. Tarricone, "An innovative animals tracking system based on passive UHF RFID technology," in 2012 20th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2012, Split, 2012. 9789532900347 (ISBN)
  68.             D. De Donno, F. Ricciato, L. Catarinucci, and L. Tarricone, "Design and applications of a software-defined listener for UHF RFID systems," in 2011 IEEE MTT-S International Microwave Symposium, IMS 2011, Baltimore, MD, 2011. DOI: 10.1109/MWSYM.2011.5972868, 0149645X (ISSN); 9781612847566 (ISBN)
  69.             I. Cuiñas, L. Catarinucci, and M. Trebar, "RFID from Farm to Fork: Traceability along the complete food chain," in Progress in Electromagnetics Research Symposium, PIERS 2011 Marrakesh, Marrakesh, 2011, pp. 1370-1374. 15599450 (ISSN)
  70.             L. Catarinucci, D. De Donno, M. Guadalupi, F. Ricciato, and L. Tarricone, "Performance analysis of passive UHF RFID tags with GNU-radio," in 2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI 2011, Spokane, WA, 2011, pp. 541-544. DOI: 10.1109/APS.2011.5996765, 15223965 (ISSN); 9781424495634 (ISBN)
  71.             L. Catarinucci, I. Cuiñas, I. Expósito, R. Colella, J. A. G. Fernández, and L. Tarricone, "RFID and WSNs for traceability of agricultural goods from Farm to Fork: Electromagnetic and deployment aspects on wine test-cases," in 19th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2011, Split, Hvar, Dubrovnik, 2011, pp. 12-15. 9789532900262 (ISBN)
  72.             L. Catarinucci, R. Colella, and L. Tarricone, "A new enhanced UHF RFID Sensor-Tag," in 5th European Conference on Antennas and Propagation, EUCAP 2011, Rome, 2011, pp. 2309-2312. 9788882020743 (ISBN)
  73.             L. Catarinucci, R. Colella, and L. Tarricone, "Optimized antennas for enhanced RFID sensor tags," in 2011 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI 2011, Spokane, WA, 2011, pp. 1433-1436. DOI: 10.1109/APS.2011.5996562, 15223965 (ISSN); 9781424495634 (ISBN)
  74.             D. De Donno, F. Ricciato, L. Catarinucci, A. Coluccia, and L. Tarricone, "Challenge: Towards distributed RFID sensing with software-defined radio," in 16th Annual Conference on Mobile Computing and Networking, MobiCom 2010, Chicago, IL, 2010, pp. 97-104. DOI: 10.1145/1859995.1860007, 9781450301817 (ISBN)
  75. L. Catarinucci, R. Colella, L. Tarricone, R. Pinto, S. Mancini, “Human Exposure to UHF-RFID Sources,” in International Congress of the European Bioelectromagnetic Association, EBEA, Rome, Italy, February 2011.
  76. L. Catarinucci, R. Colella, M. De Blasi, M. Stefanizzi, L. Patrono, and L. Tarricone, “Effectiveness of Far Field UHF RFID Tags for Item-Level Tracing in the pharmaceutical supply chain,” in Third International IEEE EURASIP Workshop on RFID Technology, Cartagena, Spain, 6-7 September, 2010.
  77.             L. Catarinucci, R. Colella, and L. Tarricone, "Sensor data transmission through passive RFID tags to feed wireless sensor networks," in 2010 IEEE MTT-S International Microwave Symposium, MTT 2010, Anaheim, CA, 2010, pp. 1772-1775. DOI: 10.1109/MWSYM.2010.5515721, 0149645X (ISSN); 9781424477326 (ISBN)
  78.             L. Catarinucci, R. Colella, and L. Tarricone, "Integration of RFID and sensors for remote healthcare," (invited) in 2010 3rd International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL 2010, Roma, 2010. DOI: 10.1109/ISABEL.2010.5702838, 9781424481323 (ISBN)
  79. L. Catarinucci, R. Colella, L. Tarricone, “On the Possible Effects of UHF Radio Frequency Identification (RFID) Radiations on Biological Systems,” in ICEMB workshop, Genova, Italy, 2010.
  80.             L. Catarinucci, R. Colella, M. De Blasi, L. Patrono, and L. Tarricone, "Improving item-level tracing systems through ad hoc UHF RFID tags," in 2010 IEEE Radio and Wireless Symposium, RWW 2010, New Orleans, LA, 2010, pp. 160-163. DOI: 10.1109/RWS.2010.5434200, 9781424447268 (ISBN)
  81.             L. Catarinucci, R. Colella, M. De Blasi, V. Mighali, L. Patrono, and L. Tarricone, "High performance RFID tags for item-level tracing systems," in 18th International Conference on Software, Telecommunications and Computer Networks, SoftCOM 2010, Split, Bol, 2010, pp. 21-26. 9789532900217 (ISBN)
  82. L. Catarinucci, L. Tarricone, "New Algorithms for the Numerical Evaluation of the Specific Absorption Rate (SAR),” in 2009 IEEE AP-S International Symposium and UNSC/URSI National Radio Science Meeting, Charleston, SC, June 1-5, 2009.
  83.             G. Monti, L. Catarinucci, and L. Tarricone, "Metal foams for electromagnetic shielding: A plasma model," in 3rd European Conference on Antennas and Propagation, EuCAP 2009, Berlin, 2009, pp. 2123-2126. 9783000245732 (ISBN)
  84.             G. Monti, L. Catarinucci, and L. Tarricone, "Experimental validation of a plasma model for electromagnetic metal foam shields," in 2009 IEEE MTT-S International Microwave Symposium, IMS 2009, Boston, MA, 2009, pp. 145-148. DOI: 10.1109/MWSYM.2009.5165653, 0149645X (ISSN); 9781424428045 (ISBN)
  85.             L. Catarinucci, R. Colella, A. Esposito, L. Tarricone, and M. Zappatore, "A context-aware smart infrastructure based on RFID sensor-tags and its application to the health-care domain," in 2009 IEEE Conference on Emerging Technologies and Factory Automation, ETFA 2009, Mallorca, 2009. DOI: 10.1109/ETFA.2009.5347156, 9781424427284 (ISBN)
  86.             A. Esposito, L. Tarricone, M. Zappatore, L. Catarinucci, R. Colella, and A. Di Bari, "A framework for context-aware home-health monitoring," in 5th International Conference on Ubiquitous Intelligence and Computing, UIC 2008 vol. 5061 LNCS, ed. Oslo, 2008, pp. 119-130.
  87.             A. Esposito, L. Tarricone, M. Zappatore, and L. Catarinucci, "An intelligent system for distributed patient monitoring and care giving," in 5th Int. Workshop on Ubiquitous Computing, IWUC 2008; 4th Int. Workshop on Model-Driven Enterprise Information Systems, MDEIS 2008; 3rd Int. Workshop on Technologies for Context-Aware Business Process Management, TCoB 2008; ICEIS 2008, Barcelona, 2008, pp. 12-21. 9789898111494 (ISBN)
  88.             L. Catarinucci, L. Tarricone, R. Colella, and A. Esposito, "Enhancing sensor network capabilities through a cost-effective RFID tag for sensor data transmission," in 2nd International Workshop on RFID Technology - Concepts, Applications, Challenges, IWRT 2008; In Conjunction with ICEIS 2008, Barcelona, 2008, pp. 175-180. 9789898111463 (ISBN)
  89.             L. Catarinucci, M. Cappelli, R. Colella, A. Di Bari, and L. Tarricone, "A novel and low-cost multisensor-integrated RFID tag for biomedical applications," in 2008 IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, APSURSI, San Diego, CA, 2008. DOI: 10.1109/APS.2008.4619694, 9781424420421 (ISBN)
  90. L. Catarinucci, R. Colella, L. Tarricone, “Specific Absorption Rate Numerical Evaluation in Humans Exposed to UHF-RFID Reader Antennas,” in 2008 IEEE AP-S International Symposium and USNC/URSI National Radio Science meeting, San Diego (CA), July 5-12, 2008.
  91.             A. Cataldo, G. Monti, E. De Benedetto, G. Cannazza, L. Tarricone, and L. Catarinucci, "A comparative analysis of reflectometry methods for characterization of antennas," in 2008 IEEE International Instrumentation and Measurement Technology Conference, I2MTC, Victoria, BC, 2008, pp. 240-243. DOI: 10.1109/IMTC.2008.4547038, 10915281 (ISSN); 1424415411 (ISBN); 9781424415410 (ISBN)
  92.             A. Cataldo, G. Monti, E. De Benedetto, G. Cannazza, L. Tarricone, and L. Catarinucci, "On the use of a reliable low-cost set-up for characterization measurements of antennas," in 16th IMEKO TC4 International Symposium on Exploring New Frontiers of Instrumentation and Methods for Electrical and Electronic Measurements; 13th International Workshop on ADC Modelling and Testing - IMEKO TC4 - TC21 Joint Session, Florence, 2008, pp. 62-65. 9788890314933 (ISBN)
  93. L. Catarinucci, L. Ranieri, L. Tarricone, “New Challenges in Healthcare Industry by Adopting Radio Frequency Identification Systems and Sensor Networks,”  in International Conference The Modern Information Technology in the Innovation Processes of the Industrial Enterprises, MITIP 2007, Florence, Italy, September 6-7, 2007.
  94. L. Catarinucci, L. Tarricone, “Standardization of Accurate Specific Absorption Rate (SAR) Numerical Evaluation Techniques,” in Proceedings of XIV Congress of the Polish Radiation Research Society and EMF-NET MT2 Seminar, Kielce/Krakow, PL, September 25- 27, 2007.
  95. L. Catarinucci, L. Tarricone, "Uncertainty in Numerical Dosimetry in the Radiofrequency Range,” (Invited), in International Workshop on Current Trends in Health and Safety Risk Assessment in Work Related Exposure to EMFs, Milan, Italy, 14-16 Feb. 2007.
  96.             L. Catarinucci and L. Tarricone, "Specific absorption rate (SAR) numerical evaluation: A critical discussion," in 2007 IEEE MTT-S International Microwave Symposium, IMS 2007, Honolulu, HI, 2007, pp. 1349-1352. DOI: 10.1109/MWSYM.2007.380462, 0149645X (ISSN); 1424406889 (ISBN); 9781424406883 (ISBN)
  97.             A. Cataldo, L. Catarinucci, L. Tarricone, F. Attivissimo, and A. Trotta, "A TD-FD combined method for enhancing reflectometry measurements in liquid quality monitoring," in 2007 IEEE Instrumentation and Measurement Technology, IMTC 2007 - Synergy of Science and Technology in Instrumentation and Measurement, Warsaw, 2007. 10915281 (ISSN); 1424410800 (ISBN); 9781424410804 (ISBN)
  98. L. Catarinucci, O. Losito, L. Tarricone “Metal Foams for EM Shielding Applications”, in Mediterranean Microwave Symposium, MMS 2006, Genova - Italy, 19-21 September 2006, pp 551- 554.
  99. L. Catarinucci, A. Coluccia, L. Tarricone, "Towards a Standardization of SAR Numerical Evaluation,” in 4th International Workshop on Biological Effects of Electromagnetic Fields, 16-20 October 2006, Crete, Greece. 960-233-173-9 (ISBN)
  100.             L. Catarinucci, O. Losito, L. Tarricone, and F. Pagliara, "High added-value em shielding by using metal-foams: Experimental and numerical characterization," in 2006 IEEE International Symposium on Electromagnetic Compatibility, EMC 2006, Portland, OR, 2006, pp. 285-289. 10774076 (ISSN); 142440293X (ISBN); 9781424402939 (ISBN)
  101.             L. Catarinucci, P. Palazzari, and L. Tarricone, "A parallel variable-mesh FDTD algorithm for the solution of large electromagnetic problems," in 19th IEEE International Parallel and Distributed Processing Symposium, IPDPS 2005, Denver, CO, 2005. DOI: 10.1109/IPDPS.2005.55, 0769523129 (ISBN); 0769523129 (ISBN); 9780769523125 (ISBN)
  102. L. Catarinucci, P. Palazzari, L. Tarricone, “High Performance FDTD for Human-Antenna Interaction Problems in the Near Field,” in International workshop on Electromagnetic Fields in the Workplace, Warszawa, Poland, 5-7 September, 2005, pp. 33-36.
  103. L. Catarinucci, L. Tarricone, “Principles of Electromagnetic Dosimetry for RF and MW,” in International workshop on Electromagnetic Fields in the Workplace, Warszawa, Poland, 5-7 September, 2005, pp. 15-19.
  104. L. Catarinucci, F. Congedo, P. Palazzari, L. Tarricone “An Easy and Efficient Variable-Mesh Scheme for Parallel FDTD Algorithms: Application to Human-Antenna Interaction Problems,” in Electromagnetic Compatibility of Wireless Systems Workshop, EMC Europe 2005, pp. 445-448, Rome, Italy, September 17-19, 2005.
  105.             L. Catarinucci, G. Monti, and L. Tarricone, "A parallel-grid-enabled variable-mesh FDTD approach for the analysis of slabs of double-negative metamaterials," in 2005 IEEE Antennas and Propagation Society International Symposium and USNC/URSI Meeting, pp. 782-785, Washington, DC, 2005. DOI: 10.1109/APS.2005.1552373, 15223965 (ISSN); 0780388836 (ISBN); 9780780388833 (ISBN)
  106. L. Catarinucci, A. Esposito, L. Tarricone, “Attacking large numerical electromagnetic challenges with Grid Computing: applications to human-antenna interaction and other problems,” in International Symposium on Electromagnetic Compatibility, EMC Europe 2004,  Eindhoven , September 6-10, 2004.
  107. L. Catarinucci, B. Di Chiara, A. Esposito, M. Strappini, L. Tarricone, “New Perspectives for Computational Electromagnetics with Grid Computing,” in Progress in Electromagnetics Research Symposium, PIERS 2004, March 28-31, Pisa, Italy, 2004.
  108. L.Catarinucci, P. Palazzari, L. Tarricone, “On the Use of Numerical Phantoms in the Study of the Human-Antenna Interaction Problem,” in 2003 IEEE AP-S International Symposium and USNC/CNC/URSI Meeting,  Columbus, OH, June 22-27, 2003.
  109. L. Catarinucci, P. Palazzari, L. Tarricone, “Human exposure to the near-field of radiobase antennas: SAR estimation dependence on the phantom shape and characterization,” in International Conference on Electromagnetic Near-Field Characterization, Rouen, France, 18-20 June 2003.
  110. L. Catarinucci, P. Palazzari, L. Tarricone, “Human Exposure to Radiobase Antennas: Numerical Analysis of the Far-Field Approximation and Full-wave Solution of the Near-field Problem using Parallel FDTD,” in International Symposium on Electromagnetic Compatibility, EMC EUROPE 2002, pp. 959-964, Sorrento, Italy, September 9-13, 2002.
  111. L. Catarinucci, P. Palazzari, and L. Tarricone, "A parallel FDTD tool for the solution of large dosimetric problems: An application to the interaction between humans and radiobase antennas," in IEEE MTT-S International Microwave Symposium Digest, Seattle, WA, 2002, pp. 1755-1758. 0149645X (ISSN)
  112. L. Catarinucci, P. Palazzari, L. Tarricone, “Human exposure in the near-field of a radiobase-station antenna: a numerical solution using massively parallel systems,” in Parallel Computing 2001, ParCo 2001, pp 75-82, Naples, Italy, 4 - 7 September 2001. DOI: 10.1142/9781860949630_0010
  113. L. Catarinucci, P. Palazzari, L. Tarricone, “Parallel FDTD solutions to the interaction between radiobase-station antennas and humans,” in 8th International Conference on Advances in Communications and Control, ComCon8, pp. 1011-1019, Crete, Greece, 25-29 june 2001.
  114. L. Catarinucci, P. Palazzari, L. Tarricone, “Parallel Simulation of Radio-Base Antennas on Massively Parallel Sistems,” in IEEE 15th International Parallel & Distribuited Processing, IPDPS 2001, San Francisco, California, pp. 1-9, April 23-27, 2001. 0-7695-0990-8 (ISBN)
  115. L.Catarinucci, P. Palazzari, L. Tarricone, “Human exposure to the near-field of a radiobase-station antenna: a numerical parallel-FDTD solution,” workshop’s papers on THE BIOLOGICAL EFFECT OF ELECTROMAGNETIC FIELDS, Perugia, Italy, 2001.
  116. L. Catarinucci, P. Palazzari, L. Tarricone, “Near-Field Numerical Characterization of Radio-Base Antennas with Parallel Electromagnetic Codes,” in International Conference on Parallel and Distribuited Processing Techniques and Applications, PDPTA 2000, Vol III, pp 1675-1681, Las Vegas, Nevada, USA, June, 26-29, 2000.

 

Publications on proceedings of national conferences

  1. L. Catarinucci, R. Colella, L. Tarricone, “Innovative Prototyping Techniques for UHF RFID Tags,” in XIX Riunione Italiana di Elettromagnetismo, RINEM 2012. pp. 1-4, Rome, 10 - 14 September 2012.
  2. D. De Donno, L. Catarinucci, R. Colella, L. Tarricone, “Performance Evaluation of Passive UHF RFID Tags with Software-Defined Radio,” in XIX RiNEm Riunione Nazionale di Elettromagnetismo, pp. 1-4, Rome, 10-14 September 2012.
  3. L. Catarinucci, R. Colella, A. Esposito, L. Tarricone, M. Zappatore, “A Novel RFID Sensor Tag Feeding a Flexible Context-Aware Smart Infrastructure,” in XVIII Riunione Nazionale di Elettromagnetismo, RiNEm 2010, Benevento 6-10 Settembre 2010
  4. D. De Donno, A.Esposito, L.Tarricone, L.Catarinucci, “Implementazione Ottima GPU-Enabled del Metodo FDTD per lo Studio Dell’Interazione Uomo-Antenna,”  in XVIII Riunione Nazionale di Elettromagnetismo, RiNEm 2010, Benevento 6-10 Settembre 2010
  5. L. Catarinucci, L. Tarricone, “Modelli per la valutazione delle grandezze dosimetriche e la verifica dei limiti relativi a campi elettromagnetici a radiofrequenza,” (Invited) in IV convegno nazionale sul controllo ambientale degli agenti fisici, Vercelli, 24-26 marzo 2009.
  6. L. Catarinucci, R. Colella, L. Tarricone, "Tag RFID per la Trasmissione di Parametri Fisici in Wireless Sensor Networks,” in Atti della XVII Riunione Nazionale di Elettromagnetismo, RiNEm 2008, Lecce, 15-19 Settembre 2008.
  7. L. Catarinucci, L. Tarricone, M. Vallone, “Schiume Metalliche per Schermature Elettromagnetiche ad Alto Valore Aggiunto: Caratterizzazione Numerica e Risultati Sperimentali,” in Atti della XVII Riunione Nazionale di Elettromagnetismo, RiNEm 2008, Lecce, 15-19 Settembre 2008.
  8. A. Cataldo, L. Catarinucci, L. Tarricone, E. Piuzzi, F. Attivissimo, A. Trotta, “Estensione delle prestazioni TDR per il monitoraggio qualitativo in liquidi industriali tramite un approccio combinato nel dominio del tempo e della frequenza,” GMEE 2007, Torino 5-10 Settembre 2007.
  9. L. Catarinucci, M. Cappelli, L. Ranieri, L. Tarricone, “Perspectives of RFID technology in healthcare sensors,” proceedings of the 8th National Congress of the Italian Association of Telemedicine and Medical Informatics - @ITIM – Bari, 13-15 Dicembre 2007.
  10. L. Catarinucci, A. Esposito, L. Tarricone, “Grid computing per l’elettromagnetismo: una rassegna di possibili applicazioni,”  in XV Riunione Nazionale di Elettromagnetismo, RiNEm 2004, Cagliari, settembre 2004.
  11. L. Catarinucci, P. Palazzari, L. Tarricone, “Un metodo FDTD parallelo per lo studio dell'esposizione umana al campo vicino di antenne per stazioni radiobase,” in XVI Riunione Nazionale di Elettromagnetismo, RiNEm 2002, pp. 644-647, Ancona, 16-19 Settembre, 2002.
  12. L. Catarinucci, G. Alberti, L. Tarricone, “Metodo FDTD per lo Studio del Curing a Microonde dei Polimeri,” in XVI Riunione Nazionale di Elettromagnetismo, RiNEm 2002, sessione poster, Ancona, 16-19 Settembre, 2002.
  13. L. Catarinucci, P. Palazzari, L. Tarricone, “Simulazione parallela di antenne per stazioni radio base su sistemi massivamente paralleli,” in convegno nazionale “Problemi e Tecniche di Misura degli Agenti Fisici in Campo Ambientale,” pp. 105-108, Castello di Parella, Ivrea (TO), 3-5 Aprile 2001.